PART [C]: SPECIALIZED PROGRAMS (15) SUSTAINABLE ENERGY ENGINEERING Program (SEE) برنامج هندسة الطاقة المستدامة #### (15) Sustainable Energy Engineering Program (SEE) برنامج هندسة الطاقة المستدامة #### رؤية البرنامج VISION The vision of Sustainable Energy Engineering (SEE) Program is to provide a high-quality energy engineering education to graduate engineers who are innovative, entrepreneurial and successful in advanced fields of sustainable energy engineering to meet the everchanging industrial demands and social needs. #### رسالة البرنامج MISSION The mission of the Sustainable Energy Engineering (SEE) Program is to develop scholar practitioners who would be the future leaders of their field driving profitability, avoiding unnecessary costs, achieving highest possible efficiencies through qualifying them with high skills based upon deep understanding of the physics and comprehending the human and economical dimensions. The program will provide the optimal learning environment with close exchange and continuous engagement with the ongoing mega projects taking place in the country to provide a generation of hands on engineers who are ready to embark into constructing activities once they graduate. The graduates would be of known attributes that are required by the business community in the field of Sustainable Energy Engineering (SEE). #### مواصفات الخريج GRADUATE ATTRIBUTES The SEE program has adopted the National Academic Reference Standards (NARS) for Engineering issued by the National Authority for Quality Assurance and Accreditation for Education (NAQAAE) as the program objects to ensure the satisfaction of the national quality assurance standards. The NARS 2018 for Engineering are broad statements that define the main characteristics and performance expected from all engineering students upon their graduation so that the graduate attributes of the SEE program can be achieved as follows, where the graduate must be able to: #### BASIC Mechanical Engineering graduate must be able to: - Model, analyze and design physical systems applicable to the specific discipline by applying the concepts of: Thermodynamics, Heat Transfer, Fluid Mechanics, solid Mechanics, Material Processing, Material Properties, Measurements, Instrumentation, Control Theory and Systems, Mechanical Design and Analysis, Dynamics and Vibrations. - Plan, manage and carry out designs of mechanical systems and machine elements using appropriate materials both traditional means and computer-aided tools and software contemporary to the mechanical engineering field. - Select conventional mechanical equipment according to the required performance. - Adopt suitable national and international standards and codes; and integrate legal, economic and financial aspects to: design, build, operate, inspect and maintain mechanical equipment and systems. In Addition to the above attributes for Mechanical Engineers; the Sustainable Energy Engineering Graduate must be able to: - Work with energy systems such as conventional energy generation systems, renewable and clean power generation systems, refrigeration, heating, ventilation, and air conditioning (HVAC) systems. - Cope with the state of art applications in the market nowadays such as green buildings and all types of renewable energies. - Perform an accurate performance analysis for the mentioned systems using mathematics, physical and engineering sciences. - Use different instruments appropriately and carryout experimental design, automatic data acquisition, data analysis, data reduction and interpretation, and data presentation, both orally and in the written form. - Use and/or develop computer software, necessary for the proper designs of highperformance systems. - Lead or supervise a group of designers or technicians and other work force. #### مرجعية البرنامج PROGRAM BENCHMARK | NARS 2018 | LEVEL A | LEVEL B | LEVEL C | LEVEL D | |-----------|--------------------------|-------------------|-----------|---------| | | Totally Adopted
P.A11 | Partially Adopted | See below | NA | #### LEVEL C: - Design, install, operate and Specify Design energy generation equipment for conventional, new and renewable energy systems; - C2. Understand, design and apply the principles of fire safety and fire-fighting systems. - C3. Analyze experimental results and determine their accuracy and validity. - C4. Use computational tools and packages and write computer programs pertaining to mechanical power and sustainable energy engineering. - C5. Design, develop, or evaluate energy-related projects or programs to reduce energy costs or improve energy efficiency during the designing, building, or remodeling stages of construction. # Specialized Tracks of Engineering Profession ## توصيف المقررات SPECIALIZED COURSES CONTENTS | Code | Name | Credit Hours | Category | Pre-requisite | |---------|-----------------------|--------------|----------|----------------------------| | SEES280 | Engineering Seminar | 1 | DR | 30 CR.HRS. +
AA APROVAL | | SEES281 | Industrial Training-1 | 1 | FR | 60 CR.HRS. +
AA APROVAL | | SEES381 | Industrial Training-2 | 2 | DR | SEES281 + AA
APPROVAL | | SEES481 | Graduation Project-1 | 1 | FR | 110 CR.HRS.+
SOPHOMORE | | SEES482 | Graduation Project-2 | 3 | DR | SEES481 +
AA APROVAL | | Total | | 2+6 | | | ## توصيف المقررات COURSES CONTENTS | | Name/Content Credit
Hours | Credit | | | / (| Conta | ct Ho | urs | | | | |-----------|--|---|---|--|---|---|---|---|--|---|--| | Code | | Hours | Lec | Tut
(2) | App.
Tut | Lab | Stud | Off.
Tut | Off.
Hrs | Total | | | Faculty R | Requirements | | | 8884 | | 50 | (e
/2 | | | 7.0 | | | SEES280 | Engineering Seminar | 1 | 1 | 0 | | | | | | 1 | | | | Pre-requisites: 30 CR.HRS. + AA | Pre-requisites: 30 CR.HRS. + AA APROVAL | | | | | | | | | | | Sp | The guest speaker should discumplemented in his/her industri-
reports on the guest presentation course is graded as Pass/Fail graded. | al establ | lishme
deliver | nt. S | tudent | s exer | cise wr | iting b | rief te | chnical | | | SEES281 | Industrial Training-1 | 1 | 0 | 0 | | | | | | 0 | | | | Pre-requisites: 60 CR.HRS. + AA | APROVA | AL | | | | | | | | | | SEES281 | Training on industrial establishments, during a minimum period least one follows up visit to the trainee(s). A Mentor in the instudent's performance during presentation to be evaluated by external examiner appointed from graded as Pass/Fail grade-system. | of three
ne train n
dustria
training
by a pandom indust | weeks
ng ven
estab
g. The
el of t | s. The
nue a
lishme
stu
hree | progr
nd for
ent pr
dent
memb | am tra
mally i
ovides
submit
ers wi | report of a formula a formula a formula the one | dvisor son per
mal re
ormal
memb | schedu
formar
port o
report
er bei | iles at
ince of
in the
and
ing an | | | | | Crodit | | | (| Conta | ct Ho | urs | | | | | |---------|---|--|--------------------------------------|------------------------------|--|---|--|---|---|---|--|--| | Code | Name/Content | Credit | Lec | Tut
(2) | App.
Tut | Lab | Stud | Off.
Tut | Off.
Hrs | Total | | | | SEES381 | Industrial Training-2 2 0 0 0 | | | | | | | | | | | | | 1111 | Pre-requisites: SEES281 + AA | Approval | | | | | | | | - | | | | | Training on industrial establishments, during a minimum period least two follow-up visits to the trainee(s). A Mentor in the industrial performance during training. The evaluated by a panel of three appointed from industry or other | nd of six of
the training
strial estant
the stude
the member | weeks og ver oblishn ot sub ors with | The nue a nent pomits a nene | progra
nd for
provide
a form
mem | am tra
mally
s a for
al repo
ber be | ining a
report
mal rep
ort and
eing an | dvisor
on per
ort on
prese
extern | schedorforma
the stuntation
nal exa | ules at
nce of
ident's
to be
aminer | | | | SEES481 | grade-system. Graduation Project-1 | 1 | 0 | 0 | 2 | Tie coc | 1130 13 (| graded | asra | 2 | | | | SEE3401 | Pre-requisites: 110 credits + SC | PHOMOS | - 7 | U | | | | | | | | | | | Students – in groups (or individually in some programs) - undertake a final project as
part of the program. In GP1, students provide a clear identification of a real-life problem that represents an actual need for the industry or the community and reflects the mission and strategic objective of CUFE. Students are expected to survey the related literature, collect, and interpret market data, and proposed an approach for the solution, using the engineering knowledge and skills acquired. The course is graded as Pass/Fail based upon a report/oral presentation stating the expected cost and required material, tools, and facilities as well as a timed list of delive ables. | | | | | | | | | | | | | SEES482 | Graduation Project-2 | 3 | 1 | 0 | 2 | 2 | | | | 5 | | | | | Pre-requisites: SEES481 + AA | Approval | | | | | | | | | | | | St | Graduation Project-2 is the second phase of the graduation project. The aim is to develop innovative solutions to problems encountered during the implementation process thus fulfilling the deliverables stated in Graduation Project-1. A dissertation on the project is | | | | | | | | | | | | | | submitted taking into consider requirements while analysing the | eration | technic | cal, e | econor | nic, s | ocial, | and e | nviron | | | | ## متطلبات البرنامج PROGRAM REQUIREMENTS | Category | | No. of courses | Course
Credit Hour | Total Credit
Hours | |----------------------------------|------------|----------------|-----------------------|-----------------------| | Discipline | core/ | 18 | 3 | 54 | | Requirements | compulsory | 2 | 2 | 4 | | (DR) | Elective | 2 | 3 | 6 | | Total DR courses | | 22 | | 64 | | | core/ | 8 | 3 | 24 | | Program | compulsory | 3 | 2 | 6 | | Requirement (PR) | Clastina | 3 | 3 | 9 | | | Elective | 2 | 2 | 4 | | Total PR courses | | 16 | A | 43 | | Total Elective courses (DR & PR) | | 7 | Sil | 19 | Discipline Requirements (DR) core/compulsory courses list | Code | Name £ | Credit
Hours | Pre-requiste | |---------|---|-----------------|----------------------| | MDPS001 | Fundamentals of Manufacturing Engineering | 2 | None | | MTHS102 | Linear Algebra and Multivariable Calculus | 3 | MTHS003 | | MTHS104 | Differential Equations | 3 | MTHS003 | | EPES201 | Electrical Engineering Fundamentals | 3 | PHYS002 | | MCNS101 | Thermodynamics | = 3 | PHYS001 | | MCNS326 | Heat Transfer | 3 | MCNS101 | | MCNS327 | Heat and Mass Transfer | 3 | MCNS326 | | MDPS132 | Materials Science | 3 | None | | MDPS261 | Stress Analysis | 3 | EMCS002 | | MEPS209 | Engineering Thermodynamics | 3 | MCNS101 | | MCNS202 | Fluid Mechanics | 3 | MTHS002 | | MEPS224 | Intermediate Fluid Mechanics | 2 | MCNS202 | | MEPS309 | Thermal Design of Energy Facilities | 3 | MCNS202 +
MCNS326 | | MEPS310 | Mechanics of Machines and Vibration | 3 | MDPS261 | | MEPS231 | Laboratory of Mechanical Engineering | 3 | MCNS202 | | MEPS436 | Fundamentals of Turbomachine'y | 3 | MCNS202 | | MEPS203 | Fundamentals of Combustion Systems | 3 | MEPS209 | | Code | Name | Credit
Hours | Pre-requiste | |---------|---|-----------------|----------------------| | MEPS201 | Internal Combustion Engines (Theory and Development) | 3 | MEPS209 | | MEPS306 | Instrumentation and Computer Control (Application and Design) | 3 | EPES201 | | MTHS114 | Numerical Analysis | 3 | MTHS102 +
MTHS104 | | Total | | 58 | | ## Discipline Requirements (DR) elective courses list | Code | Name | | Pre-requiste | |----------|--|------|-----------------------------| | ELECTIVE | (E-2) 2 courses (6 Credits) | | | | EPES303 | Electric Drive Systems | 3 | EPES201 | | MDPS352 | Machine Design | 3. | MDPS261 | | MDPS241 | Manufacturing Processes I | 3 | PHYS001 | | MDPS217 | Machine Drawing | 3 | INTS001 | | MDPS432 | Pressure Vessels and Piping | 3 | 85 credits + AA
Approval | | MEPS333 | Automotive Systems | 3 | MEPS201 | | MEPS402 | Sea Water Desalination | 3 | MCNS326 | | MEPS403 | Heat Exchangers Design | 3 | MCNS326 | | EPES450 | Programmable Logic Controllers | 3 | EPES303 | | MDPS381 | Fundamentals of Industrial Engineering | 3 | NONE | | MDP\$382 | Engineering Economy and Financial Management | ring | E-A (GENS120) | | MDPS383 | Operations Research I | 3 | MTHS102 | | Total | | 36 | | ## Program Requirements (PR) core/compulsory courses list | Code | | | Pre-requiste | |---------|--|----|--------------------------| | MEPS404 | Nuclear Energy | 3 | MEPS209 | | MEPS305 | Applied Control Technologies for Energy
System | 3 | MTHS003 +
MEPS224 | | MEPS320 | Fundamentals and Applications of Solar
Energy | 3 | MCNS326 | | MEPS415 | Power Generation | 3 | 85 credits + AA | | MEPS316 | Air and Water Pollution and Quality
Monitoring | 3 | MCNS202 +
MEPS203 | | MEPS420 | Fundamentals of Energy in Buildings | 2 | MEPS421 | | MEPS421 | Fundamentals of Refrigeration and Air
Conditioning Design | 3 | MCNS326 +
MEPS209 | | MEPS430 | Wind Energy Systems Design | 2 | MEPS224 | | MEPS332 | Laboratory of Energy Systems | 2 | MCNS326 +
MEPS201 | | MEPS446 | Applications of Turbomachinery | 3 | MEPS436 + 102
credits | | MEPS472 | Automatic Control | 3 | MEPS224 | | Total | ini ini | 30 | | ## Program Requirements (PR) elective courses list | Code | Name | Credit
Hours | Pre-requiste | |----------|---|-----------------|----------------------| | ELECTIVE | (E-3) 3 courses (9 Credits) | ring | Protession | | MEPS328 | Fine Measurements and Laser Diagnostics in
Energy System | 3 | MCNS101 +
MCNS202 | | MEPS413 | Industrial Process Heating and Cooling | 3 | MEPS320 | | MEPS422 | Energy Auditing | 3 | MEPS421 | | MEPS425 | Renewable Energy | 3 | 85 credits | | MEPS432 | Design of Renewable Energy Ecuipment | 3 | MEPS320 | | MEPS444 | Energy Efficiency | 3 | MEPS209 +
MCNS327 | | MEPS475 | Hydroelectric Power Plants | 3 | MEPS436 +
MEPS224 | | Code | Name | Credit
Hours | Pre-requiste | |-----------------|---|-----------------|----------------------| | MEPS431 | MEPS431 Sustainability and Design for Environment | | 60 Credits | | MEPS438 | Hydrogen technologies for a sustainable energy system | 3 | MEPS203 | | MEPS439 | Fundamentals of Photovoltaics | 3 | MEPS209 | | ELECTIVE | (E-4) 2 courses (4 Credits) | | | | MEPS407 | Fire Extinguishing Systems | 2 | MEPS224 +
MEPS203 | | MEPS411 | Concentrated Solar Power (CSF) | 2 | MEPS320 | | MEPS412 | Energy Storage | 2 | MEPS320 | | MEPS414 | Advanced CFD | 2 | MEPS224 | | MEPS417 | Pollution control equipment design | 2 | MCNS202 +
MEPS203 | | MEPS418 | PV Technology and its applications | 24 | MEPS320 | | MEPS419 | Oil Hydraulics and Pneumatics | 2 | MEPS224 | | Total | | 33 | | Specialized Tracks of Engineering Profession #### Proposed Study Plan - 8 semesters - Including Freshman Level | | | | Credit | | | Con | tac | t Ho | urs | j | | |------------|---------|--|--------|-----|---------|---------|-----|------|---------|-------|-------| | s | Code | Code Name | | Lec | Tut (2) | App Tut | Lab | Stud | Off Tut | OffHr | Total | | | PHYS001 | Mechanical Properties of Matter and Thermodynamics | 3 | 2 | | 2 | 1 | | | | 5 | | 2 | MTHS002 | Calculus I | 3 | 2 | 2 | | | | | | 4 | | 臣 | EMCS001 | Engineering Mechanics - Dynamics | 3 | 1 | 2 | î î | 1 | | | | 4 | | SEMESTER 1 | CHES001 | Chemistry for Engineers | 2 | 1 | 2 | | | | | | 3 | | M | INTS001 | Engineering Graphics | 3 | 2 | | 0 | | 3 | to. | | 5 | | 圆 | INTS004 | Information Technology | 2 | 1 | | | 3 | - | | | 4 | | " | GENS004 | Proficiency and Capacity Building | 1 | 1 | A | | | | 10 | | 1 | | | GENS001 | Critical and Creative Thinking | 2 | 2 | m S | | | | | | 2 | | | | Sub-Total | 19 | 13 | 6 | 2 | 4 | 3 | 0 | 0 | 28 | | | | | | | | Cor | itac | t Ho | urs | | | |----------
--|--|--------|--------|-----------|----------|------|------|---------|----------|-------| | s | Code | Name Plized Trooks of Engin | Credit | Je Lec | 7 Tut (2) | App. Tut | Lab | Stud | Off Tut | Off. Hrs | Total | | | Annual Control of the | Calculus 2 dUNO UI LIIZII | 3 | 2 | 2 | | UL | 59 | SIL | 111 | 4 | | N | EMCS002 | Engineering Mechanics - Statics | 2 | 1 | 2 | | | | | | 3 | | 2 | PHYS002 | Electricity and Magnetism | 3 | 2 | | 2 | 1 | | | | 5 | | SEMESTER | | Fundamentals of Manufacturing
Engineering | 2 | 1 | | | 3 | | | | 4 | | 2 | MTHS005 | Introduction to Probability and Statistics | 3 | 2 | 2 | | | | | | 4 | | S | MCNS101 | Thermodynamics | 3 | 2 | 2 | 0 | | | S - 6 | | 4 | | | MDPS132 | Materials Science | 3 | 2 | 0 | 2 | 1 | | | | 5 | | | | Sub-Total | 19 | 12 | 8 | 4 | 5 | 0 | 0 | 0 | 29 | | | | | | | | Cor | itac | t Ho | urs | | | |----------|---------|---|--------|-----|---------|---------|------|------|---------|--------|-------| | S | Code | Name | Credit | Lec | Tut (2) | App Tut | Lab | Stud | Off Tut | Off Hr | Total | | | MDPS261 | Stress Analysis | 3 | 2 | 2 | | | | 3 | | 4 | | 3 | | Elective E-A (Fundamental of
Management, Risk and Environment) | 2 | 2 | | | | | 8 8 | | 2 | | SEMESTER | | Elective E-A (Writing and Presentation | 2 | 2 | | | | | | | 2 | | A | EPES201 | Electrical Engineering Fundamen:als | 3 | 2 | | 3 | | | | | 5 | | ĕ | | Fluid Mechanics | 3 | 2 | 2 | | | | | | 4 | | (I) | MTHS104 | Differential Equations | 3 | 2 | 2 | | | | 0 | - | 4 | | | MEPS209 | Engineering Thermodynamics | 3 | 2 | | 3 | | | 8 | | 5 | | | | Sub-Total | 19 | 14 | 6 | 6 | 0 | 0 | 0 | 0 | 26 | | | | | 25 | / | F 1 | Cor | itac | t Ho | ours | | | |------|---------|--|--------|-----|---------|----------|------|------|---------|----------|-------| | s | Code | Name | Credit | Lec | Tut (2) | App. Tut | Lab | Stud | Off Tut | Off. Hrs | Total | | П | MEPS231 | Laboratory of Mechanical Engineering | 3 | 2 | | | 2 | | | | 4 | | 4 | MEPS224 | Intermediate Fluid Mechanics | 2 | 2 | | 2 | | | | | 4 | | STER | MEPS201 | Internal Combustion Engines (Theory and Development) | 3 | 2 | ~ | 2 | 1, | 00 | oi. | 0.00 | 5 | | ES | GENS002 | Societal Issues | 2 | 2 | 5 | | U | 42 | SIL | 311 | 2 | | EME | MCNS326 | Heat Transfer | 3 | 2 | 2 | | | | 1 | | 4 | | S | MTHS102 | Linear Algebra and Multivariable Calculus | 3 | 2 | 2 | | | | | | 4 | | | MEPS203 | Fundamentals of Combustion Systems | 3 | 2 | | 2 | | | | | 4 | | | | Sub-Total | 19 | 14 | 4 | 6 | 3 | 0 | 0 | 0 | 27 | | | | | | | | Cor | itac | t Ho | urs | ; | | |----------|---------|---|--------|-----|---------|---------|------|------|---------|--------|-------| | s | Code | Name | Credit | Lec | Tut (2) | App Tut | Lab | Stud | Off Tut | Off Hr | Total | | | SEES280 | Engineering Seminar | 1 | 1 | | | | | | | 1 | | | E-2 | ELECTIVE E-2 | 3 | 2 | | 2 | 1 | | (1) | | 5 | | 3 | MTHS114 | Numerical Analysis | 3 | 2 | 2 | | | | | | 4 | | STE | MEPS306 | Instrumentation and Computer Control (Application and Design) | 3 | 2 | | | 2 | | | | 4 | | SEMESTER | MEPS305 | Applied Control Technologies for Energy
System | 3 | 2 | 2 | | | | | | 4 | | 0) | MCNS327 | Heat and Mass Transfer | 3 | 2 | | 2 | 1 | | Don. | | 5 | | | MEPS310 | Mechanics of Machines and Vibration | 3 | 2 | | 2 | 1 | | | | 5 | | | | Sub-Total | 19 | 13 | 4 | 6 | 5 | 0 | 0 | 0 | 28 | | | | | 1 | | | Con | tac | t Ho | urs | | Į. | |--------|------------------|---|--------|-----|---------|----------|-----|------|---------|----------|-------| | s | Code | Name | Credit | Lec | Tut (2) | App. Tut | Lab | Stud | Off Tut | Off. Hrs | Total | | | E-A
(GENS120) | Elective E-A (Fund. of Ecconomics and Accounting) | 2 | 2 | ~ | Dr | of | 00 | oiz | 202 | 2 | | STER 6 | MEPS316 | Air and Water Pollution and Quality Monitoring | 130 | 2 | 2 | | U | 42 | 211 | 111 | 4 | | I E | MEPS332 | Laboratory of Energy Systems | 2 | 2 | | | 2 | | | | 4 | | I SI | MEPS309 | Thermal Design of Energy Facilities | 3 | 2 | | 2 | | | | | 4 | | SEME | E-3 | ELECTIVE E-3 | 3 | 2 | 2 | | | | | | 4 | | S | E-2 | ELECTIVE E-2 | 3 | 2 | | 2 | 1 | | | | 5 | | 8 | MEPS320 | Fundamentals and Applications of Solar
Energy | 3 | 2 | | 2 | 1 | | | | 5 | | | | Sub-Total | 19 | 14 | 4 | 6 | 4 | 0 | 0 | 0 | 28 | | | | | | | | Cor | tac | t Ho | urs | | | |---------------|---------|--|-----------------|-----|---------|---------|-----|------|---------|-------|-------| | s | Code | Name | Credit
Hours | Lec | Tut (2) | App Tut | Lab | Stud | Off Tut | OffHr | Total | | | MEPS436 | Fundamentals of Turbomachinery | 3 | 2 | 2 | | | | | | 4 | | 200 | GENSXXX | UR Elective Course | 2 | 2 | | | | | | | 2 | | SEMESTER 7 | MEPS421 | Fundamentals of Refrigeration and Air
Conditioning Design | 3 | 2 | 2 | | | | | | 4 | | S | MEPS404 | Nuclear Energy | 3 | 2 | 2 | | | | | | 4 | | $\frac{1}{2}$ | E-4 | ELECTIVE E-4 | 2 | 2 | | 2 | | | | | 4 | | E E | E-4 | ELECTIVE E-4 | 2 | 2 | | 2 | | | | | 4 | | ٠, | E-3 | ELECTIVE E-3 | 3 | 2 | 2 | | | | | | 4 | | | SEES481 | Graduation Project - 1 | 1 | | | 2 | | | 0 | | 2 | | | | Sub-Total | 19 | 14 | 8 | 6 | 0 | 0 | 0 | 0 | 28 | | | | | 1 | | | Con | itac | t Ho | ours | | | |---------|---------|-------------------------------------|--------|-----|---------|----------|------|------|---------|----------|-------| | s | Code | Name | Credit | rec | Tut (2) | App. Tut | Lab | Stud | Off Tut | Off. Hrs | Total | | | MEPS430 | Wind Energy Systems Design | 2 | 2 | | 2 | | | | | 4 | | 88 | | Fundamentals of Energy in Buildings | 2 | 1 | 2 | - 60 | | | | | 3 | | 岜 | MEPS415 | Power Generation | 3 | 2 | - | 2 | n.f | 00 | oic | 0.00 | 4 | | SEMESTE | MEPS472 | Automatic Control | 3 | 2 | 2 | П | UI | 42 | 211 | Ш | 4 | | ᄬ | MEPS446 | Applications of Turbomachinery | 3 | 2 | 2 | | | | | | 4 | | 原 | E-3 | ELECTIVE E-3 | 3 | 2 | 2 | | | | | | 4 | | 0, | SEES482 | Graduation Project - 2 | 3 | 2 | | 1 | 2 | | | | 5 | | | | Sub-Total | 19 | 14 | 6 | 6 | 2 | | | | 28 | ## توصيف المقررات COURSES CONTENTS | | | Credit | | | (| Conta | ct Ho | urs | | | |------------
---|---|--|--|--|--|---|---|---------------------------------------|-------------------------------------| | Code | Name/Content | Hours | Lec | Tut
(2) | App.
Tut | Lab | Stud | Off.
Tut | Off.
Hrs | Tota | | Discipline | e Compulsory Courses | 10 | | | | | | | | .57 | | MDPS001 | Fundamentals of Manufacturing
Engineering
Pre-requisites: None | 2 | 1 | 0 | 3 | | No. | | | 4 | | | Engineering Materials - Elem processes- metal forming processes - metal forming processes - metal finishing processes - metal finishing processes - metal forming | cesses - | Shap
Mode | ing of | plasti
nufact | ic mate
uring, | erial
additive | Joining
manu | proce
facturii | sses
ng and | | References | Mikell P. Groover, Fundamen
Systems, 7th Edition, Wiley, 20 | | Moder | n Ma | nufact | uring: | Materia | als, Pr | ocesse | es, an | | MTHS102 | Linear Algebra and
Multivariable Calculus
Pre-requisites: MTHS003 | 3 | 2 | 2 | 0 | | | | | 4 | | References | Orthonormal Bases, The Eige Functions of Matrices. Function and its Applications, Vector Fie Applications, Line and Surface 1. Calculus Early Transcendentals | ns of Serelds, Cur
Integrals
by Jame | veral \ I and with A s Stew | Variab
Diverg
pplica
vart, 8t | les, T
gence,
ations.
h edition | he Gra
Doub | adient of
le and | of a Sc
Triple | alar Fu
Integra | inction
Is with | | O. | Elementary Linear Algebra wi
international edition. | th Applic | ations" | by t | 3. Kolr | man | and D. | HID 2 | 013, F | 'earsor | | MTHS104 | Differential Equations | 3 | 2 | 2 | 0 | | | | | 4 | | | Pre-requisites: MTHS003 | 40 | 00 | 100 | 201 50 | | 5.0 | 71: | 2 | -01 | | | First-order differential equation equations; modeling with first or method of undetermined coefficiential equations; series shifting theorems, convolution transform; Fourier series; Fourier | rder differ
icients; v
solutions
theorem
er transfo | rential
ariatio
; Lapl
; solu
erm. | equan
n of pace to
tions | tions; I
parame
ransfo
of diff | higher-
eters; i
rm; pr
erentia | order d
modelin
opertie
il equat | ifferent
ig with
s and
tions u | ial equ
higher
applic
sing L | ations
order
ations
aplace | | References | Fundamental of differential ed 2014, eighth edition . A first course in differential ed | N | Nagle | , San | and S | maer, | Pearso | n, eauc | ation I | imited | MCNS101 Thermodynamics #### BYLAWS 2023 Bachelor of Science Degree Credit Hours System 4 | CA100 - CA1 | 100 mm | Credit | | | (| Conta | ct Ho | urs | | | |-------------|---|--------------|--------|------------|-------------|---------|---------|-------------|-------------|-------| | Code | Name/Content | Hours | Lec | Tut
(2) | App.
Tut | Lab | Stud | Off.
Tut | Off.
Hrs | Total | | EPES201 | Electrical Engineering
Fundamentals | 3 | 2 | 0 | 3 | 0 | 0 | 0 | | 5 | | | Pre-requisites: PHYS002 | 10. | | (3) | W - 0 | | 9 | 0.0 | i: | O. | | | Analysis of DC and AC circuit
phase transformers and circuit
Induction motors. Predicting m | cuits thereo | f. Bas | ic DC | moto | ors: se | ries sh | unt an | d com | pound | | | Pre-requisites: PHYS001 | |------------|--| | | Basic concepts-pure substances - First law of thermodynamics and applications - second | | | law of thermodynamics and corollaries – entropy. May include a visit to a power plant. | | References | 1 Thermodynamics: An Engineering Acproach (8 ed 1 by Yunus Cengel, Michael Boles | | References | Thermodynamics: An Engi | neering Ap | proach | [8 ed | .] by ` | Yunus (| Cengel, | Michae | el Boles | | |------------|---|------------|--------|-------|---------|---------|---------|--------|----------|----| | MCNS326 | Heat Transfer | 3 | 2 | 2 | 0 | 0 | 0 | 0 | | 89 | References A. R. Hambley, Electrical Engineering: Principles and Applications, 7th ed. Pearson, 2018. Pre-requisites: MCNS101 Conduction: General equation of conduction, one dimensional steady-state conduction, steady-state conduction with internal heat generation, steady conduction with variable thermal conductivity, fins and extended surfaces, unsteady conduction. Convection: fundamentals of convection, dimensionless groups, natural and forced convection, use of empirical correlations. Radiation: Fundamentals of heat transfer by radiation. Case studies and computer applications. References Foundations of Heat Transfer, 6th Edition International Student Version by Frank P. Incropera, David P. DeWitt, Theodore L. Bergman, Adrienne S. Lavine MCNS327 Heat and MassTransfer 3 2 0 2 1 0 0 Pre-requisites: MCNS326. Fundamental Concepts of Film and Turbulent Condensation - Fundamental Concepts of Film and Turbulent Condensation - Characteristics of Flow Boiling - Types of Heat Exchangers - Logarithmic Mean Temperature Difference Method - Effectiveness- NTU Method - Fundamentals of Mass Transfer - Analogy between Heat and Mass Transfer - Diffusion Mass Transfer and Binary Mixtures - Evaporation in a Column - Convective Mass Transfer - Cooling Towers - Solar Collectors & HRSG) References 1. Holman, J.P., "Heat Transfer", McGraw Hill Inc., 2009. 2.Incropera, F.P. and De Witt, D.P., "Fundamentals of Heat and Mass Transfer", eighth Edition, John Wiley & Sons, 2020. | | | One dia | | | (| Conta | ct Ho | urs | | | |-----------------------|---|---|--------------------------------------|-------------------------|-----------------------------|----------------------------|--------------------------------|------------------------------|-----------------------------|--------------------------------| | Code | Name/Content | Credit | Lec | Tut
(2) | - | Lab | Stud | Off.
Tut | Off.
Hrs | Total | | MDPS132 | Material Science | 3 | 2 | 0 | 2 | 1 | 0 | 0 | | 5 | | | Pre-requisites: None | | | | | | | | | | | | Nature and properties of mater
and dislocations, plastic di
characteristics of alloy solidifications
various types of bonds, Hot an
growth. Metallography: Study of | eformation
ation and
d cold wo
of microstr | n, ph
struct
orking
ructure | nase
ure of
of me | diagra
metal
tals, re | ams,
s and a
ecovery | binary
alloys,
/, re-cry | phase
Iron ca
ystaliza | e equ
rbon d
ition ar | ilibrium
iagram
nd grair | | References | William D. Callister Jr., Dav
Introduction, 10th Edition, Wile | | ethwis | ch, N | lateria | ls Scie | ence a | nd En | gineeri | ng: An | | MDPS261 | Stress Analysis | 3 | 2 | 2 | 0 | 0 | 0 | 0 | | 4 | | | Pre-requisites: EMCS002 | | | 5 | (A) (B) | | W | | | | | References
MEPS209 | and torsion, deformation, stiffner
residual stresses. Combined
bending and torsion.
Structural and Stress Analysis,
Engineering Thermodynamics | loading, | eccen | tric no | ormal | | | | | | | Printed Ball Co. | Pre-requisites: MCNS101. | | | 3 | | - 22 | - | | | | | References | Vapor Power Cycles – Gas Pov
Gas Mixtures – Psychometry – | Combust | ion ch | emica | l reac | tions – | First La | aw Ana | lysis o | f | | MCNS202 | Fluid Mechanics | 3 | 2 | 2 | 0 | | | | | 4 |
 IIIOI TOLUL | Pre-requisites: MTHS002 | | | _ | | | | | | | | References | Fluid kinematics. flow types. In momentum and Energy equat modeling, Viscous flow in pipes project computer oriented. 1. Bruce R. Munson, Donald F. | and duc | olication
ts. Flo | ons. S
w me | Similitu
asurer | de and
nent. C | d dimer
General | nsional
applica | analy
ations. | sis and
Course | | | mechanics", John Wiley & S
2. Yunus A. Cengel and Joh
Applications" McGraw Hill. | | mbala | , "Flu | id Me | chanic | s - Fu | ndame | ntals a | and | | | | Credit | | | (| Conta | ct Ho | urs | | | |------------|--|-------------------------------|-------------------|----------------|---------------------|------------------|--------------------|-------------------|-------------|--------| | Code | Name/Content | Hours | Lec | Tut
(2) | App.
Tut | Lab | Stud | Off.
Tut | Off.
Hrs | Total | | MEPS224 | Intermediate Fluid Mechanics | 3 | 2 | 0 | 3 | 0 | 0 | 0 | | 5 | | | Pre-requisites: MCNS202 | | | | 100 | | | 100 | | | | | Introduction to the Navier-Stok flows; Laminar and turbulent be around a body: Lift, drag, and Hammer; Open-channel flow: hydraulic jump. | oundary
separation | layers
on; 1-l | : Grov | wth, shapress | near re | lations
w and | and to
shock | tal dra | g; Flo | | References | The state of s | 2003, McG | raw-Hill | | shi, Wa | ade W. | Huebsch | n-Funda | mentals | of Flu | | MEPS309 | Thermal Design of Energy
Facilities | 3 | 2 | 0 | 2 | 1 | 0 | 0 | | 5 | | | Pre-requisites: MCNS202, MCN | IS326 | | | | A | | | 1 | | | Sn | Physical modeling of transpor Modeling methods and algorit Thermal design of: Heat exchangers Compressors Turbines Pumps Facilities phase change | thms | | 1 | | | | 229 | ion | | | Oh | Facilities phase change | OIL | -IIIg | IIIU | UIII | 18 1 | 101 | 600 | 1011 | | | | Computer-aided design software | with app | lication | of en | ergy fa | acilities | | | | | | References | 1- Design of thermal energy systems, P
2-Thermal Energy Systems _ Design ar | | | G Pe | noncello | 2nd ed | (2019) | | | | | MEPS310 | Mechanics of Machines and
Vibration | 3 | 2 | 0 | 2 | 1 | 0 | 0 | | 5 | | | Pre-requisites: MDPS261 | 3.5 | å: | 15 | in s | | te . | 8 8 | | | | | Kinematic fundamentals: georgeoncepts: work and energy, mechanical vibrations : source acoustical vibrating systems in | balancing
es and
thermo | g of N | Machin
s of | nes; In
vibratio | troduc
on, ba | tion an
sic the | d basi
oretica | c conc | epts o | | Deference | transmission, fluid-structure inte | | Teat | C alia: | on in f | 21 I Justes | Deer | | 10 | | | eterences. | R. C. Hibbeler, "Mechanics of M | laterials" | Lenth |) Editi | on in S | SI Units | Pears | on 20 | 18 | | | Name/Content _aboratory of Mechanical Engineering Pre-requisites: MCNS202 Pressure measurements – n | Credit
Hours
3 | Lec
2 | Tut
(2)
0 | App.
Tut
0 | Lab
3 | Stud
0 | Off.
Tut
0 | Off.
Hrs | Total
5 | |--|--|--|--|--|---|--
--|--|--| | Engineering
Pre-requisites: MCNS202
Pressure measurements – n | | 2 | 0 | 0 | 3 | 0 | 0 | | 5 | | Pressure measurements - n | anomator | 0 | 10 | | | | | | | | | aanamatar | | | | | 25 | 0.5 | 12 | 700 | | forced convection measurement | measure | ments
rate m | - Th | nermor
rement | neters | - The | rmoco
vity me | uples -
asure n | - Flux | | M., & Zaporozhets, A. O. (
Springer. 2. Figliola, R. S., & Beasley
John Wiley & Sons. 3. Cataldo, A., Giaquinto, N.
Gaetani, F. (2020). Basic
Instrumentation: A Practice 4. Francis, S. T., & Morse, I | D. E. (20
, D. E. (20
, De Bener
c Theory a
e-Orientec
. E. (2018) | dels ar
detto,
and L
Guide
). Mea | Theon
E., Ma
abora
suren | y and
asciulle
tory E
nger.
nent a | design
o, A., (
experim | for me
Cannazi
ents in | ents and
echanic
za, G.,
n Meas | nd Mor
cal mea
Loren:
sureme | itoring
asuren
zo, I. &
nt and | | Turbomachinery | 3 | 2 | 2 | 0 | 0 | 0 | 0 | | 4 | | | iid macha: | ice (| Simila | rity of | fluid m | achinos | One | dimor | scional | | Basic concepts and laws of fit | | | | | | | | comp | | | | mmersed bodies. 1. Babak, V. P., Babak, S. V. M., & Zaporozhets, A. O. (Springer. 2. Figliola, R. S., & Beasley John Wiley & Sons. 3. Cataldo, A., Giaquinto, N. Gaetani, F. (2020). Basic Instrumentation: A Practice 4. Francis, S. T., & Morse, I principles and basic laborations. Fundamentals of Turbomachinery Pre-requisites: MCNS202 | mmersed bodies. 1. Babak, V. P., Babak, S. V., Eremenk M., & Zaporozhets, A. O. (2021). Mod Springer. 2. Figliola, R. S., & Beasley, D. E. (2013). John Wiley & Sons. 3. Cataldo, A., Giaquinto, N., De Bened Gaetani, F. (2020). Basic Theory of Instrumentation: A Practice-Orientec M. Francis, S. T., & Morse, I. E. (2018). principles and basic laboratory experimentals of Turbomachinery. | mmersed bodies. 1. Babak, V. P., Babak, S. V., Eremenko, V. M., & Zaporozhets, A. O. (2021). Models ar Springer. 2. Figliola, R. S., & Beasley, D. E. (2020). John Wiley & Sons. 3. Cataldo, A., Giaquinto, N., De Benedetto, Gaetani, F. (2020). Basic Theory and L. Instrumentation: A Practice-Orientec Guide 4. Francis, S. T., & Morse, I. E. (2018). Mea principles and basic laboratory experiments. Fundamentals of 3 2 Turbomachinery Pre-requisites: MCNS202 | mmersed bodies. 1. Babak, V. P., Babak, S. V., Eremenko, V. S., Ku M., & Zaporozhets, A. O. (2021). Models and Me Springer. 2. Figliola, R. S., & Beasley, D. E. (2020). Theory John Wiley & Sons. 3. Cataldo, A., Giaquinto, N., De Benedetto, E., M. Gaetani, F. (2020). Basic Theory and Labora Instrumentation: A Practice-Orientec Guide. Springer. 4. Francis, S. T., & Morse, I. E. (2018). Measuren principles and basic laboratory experiments. CRO Fundamentals of 3 2 2 Turbomachinery | forced convection measurements – rad ation measurement mmersed bodies. 1. Babak, V. P., Babak, S. V., Eremenko, V. S., Kuts, Y. M., & Zaporozhets, A. O. (2021). Models and Measures Springer. 2. Figliola, R. S., & Beasley, D. E. (2020). Theory and John Wiley & Sons. 3. Cataldo, A., Giaquinto, N., De Benedetto, E., Masciulle Gaetani, F. (2020). Basic Theory and Laboratory Elnstrumentation: A Practice-Orientec Guide. Springer. 4. Francis, S. T., & Morse, I. E. (2018). Measurement at principles and basic laboratory experiments. CRC Preselundamentals of 3 2 2 0 Turbomachinery | forced convection measurements – rad ation measurements – Minmersed bodies. 1. Babak, V. P., Babak, S. V., Eremenko, V. S., Kuts, Y. V., Mys M., & Zaporozhets, A. O. (2021). Models and Measures in Measures in Measures. 2. Figliola, R. S., & Beasley, D. E. (2020). Theory and design John Wiley & Sons. 3. Cataldo, A., Giaquinto, N., De Benedetto, E., Masciullo, A., Gaetani, F. (2020). Basic Theory and Laboratory Experim Instrumentation: A Practice-Orientec Guide. Springer. 4. Francis, S. T., & Morse, I. E. (2018). Measurement and inst principles and basic laboratory experiments. CRC Press. Fundamentals of 3 2 2 0 0 Turbomachinery | forced convection measurements – rad ation measurements – Measurem | forced convection measurements – rad ation measurements – Measurements of mmersed bodies. 1. Babak, V. P., Babak, S. V., Eremenko, V. S., Kuts, Y. V., Myslovych, M. V. M., & Zaporozhets, A. O. (2021). Models and Measures in Measurements at Springer. 2. Figliola, R. S., & Beasley, D. E. (2020). Theory and design for mechanic John Wiley & Sons. 3. Cataldo, A., Giaquinto, N., De Benedetto, E., Masciullo, A., Cannazza, G., Gaetani, F. (2020). Basic Theory and Laboratory Experiments in Measurementation: A Practice-Orientec Guide. Springer. 4. Francis, S. T., & Morse, I. E. (2018). Measurement and instrumentation in principles and basic laboratory experiments. CRC Press. Fundamentals of 3 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | Babak, V. P., Babak, S. V., Eremenko, V. S., Kuts, Y. V., Myslovych, M. V., Scher M., & Zaporozhets, A. O. (2021). Models and Measures in Measurements and Mon Springer. Figliola, R. S., & Beasley, D. E. (2020). Theory and design for mechanical measurements and Mon John Wiley & Sons. Cataldo, A., Giaquinto, N., De Benedetto, E., Masciullo, A., Cannazza, G., Lorenz Gaetani, F. (2020). Basic Theory and Laboratory Experiments in Measurement Instrumentation: A Practice-Orientec Guide. Springer. Francis, S. T., & Morse, I. E. (2018). Measurement and instrumentation in enging principles and basic laboratory experiments. CRC Press. | | | | Credit | | | (| Conta | ct Ho | urs | | | |-----------------------
---|--|--|--------------------------------------|--|------------------------------------|-------------------------------|--------------------|------------------|-----------------------------| | Code | Name/Content | Hours | Lec | Tut
(2) | App.
Tut | Lab | Stud | Off.
Tut | Off.
Hrs | Tota | | MEPS203 | Fundamentals of Combustion
Systems | 3 | 2 | 0 | 2 | 1 | 0 | 0 | | 5 | | | Pre-requisites: MEPS209 | | | (1) | 700. | | 70 | 700 | | 000 | | | Fuel types and properties; chemical equilibrium burner types and design; comb of combustion control, Premixe Combustion. | and diss | sociati
/stem | on; in efficie | troduc
ncy ar | tion to | flame
-up; st | types
ability a | and t | heory | | | Combustion, Fifth Edition by Irvi Combustion engineering by Son | | | | | | | | agland | | | MEPS201 | Internal Combustion Engines
(Theory and Development)
Pre-requisites: MEPS209 | 3 | 2 | 0 | 2 | 1 | 0 | 0 | | 5 | | | Chamber - Charge Movement In
Combustion Chamber - Adjusti
Power (Supercharging, Fuel | ng and (
Injection, | Contro | lling E
/Air N | Ingine
Mixture | Perfor | mance
rol, etc | -Incre | asing E
xampl | Engine
es fo | | Peferences | Combustion Chamber - Adjusti
Power (Supercharging, Fuel
Advanced Technologies in Inte
Cells, etc.). | ng and (
Injection,
rnal Corr | Contro
Fuel
abustic | Iling E
/Air N
on Eng | Ingine
Mixture
gines | Perfor
Contr
(Gas E | mance
rol, etc | -Incre | asing E
xampl | Engine
es fo | | References
MEPS306 | Combustion Chamber - Adjusti
Power (Supercharging, Fuel
Advanced Technologies in Inte | ng and (
Injection,
rnal Corr | Contro
Fuel
abustic | Illing E
/Air N
on Eng | Ingine
Mixture
gines | Perfor
Contr
(Gas E | mance
rol, etc | -Incre | asing E
xampl | Engine
es fo | | | Combustion Chamber - Adjusti
Power (Supercharging, Fuel
Advanced Technologies in Inte
Cells, etc.).
Internal Combustion Engines Fu
Instrumentation and Computer | ng and (
Injection,
rnal Com
undamen | Contro
Fuel
bustic | olling E
Air N
on Eng
y Hey | ngine
fixture
gines (
wood | Perfor
Contr
(Gas E | rmance
rol, etc
Engine, | -Incre | asing E
xampl | Engine
es fo
Electric | | | Combustion Chamber - Adjusti Power (Supercharging, Fuel Advanced Technologies in Inte Cells, etc.). Internal Combustion Engines Fu Instrumentation and Computer Control (Application and Design) Pre-requisites: EPES201 - Types of applications of measu - Generalized configuration of measurements | ng and (Injection, rnal Comundamen 3 | Contro
Fuel
abustion
tals by
2 | Air Non Eng | mgine
Mixture
gines (
wood
0 | Perfor
Contr
(Gas E
J.B. | rmance
rol, etc
Engine, | -Incre | asing E
xampl | Engine
es fo
Electric | | | Combustion Chamber - Adjusti Power (Supercharging, Fuel Advanced Technologies in Inte Cells, etc.). Internal Combustion Engines Fu Instrumentation and Computer Control (Application and Design) Pre-requisites: EPES201 - Types of applications of measu- Generalized configuration of manufacture of the computer Generalized performance charung devices for engineer Manipulation transmission and | ng and (Injection, rnal Comundament in a suring acteristic ring quar recording to the suring recording to the suring quar recording to the suring quarant in a suring quarant recording to the su | Control Fuel houstick tals by 2 nstrum and cos ntities ag of day | Air Non English Hey Hey 2 | mgine
Mixture
gines (
wood
0 | Perfor
Contr
(Gas E
J.B. | rmance
rol, etc
Engine, | -Incre | asing E
xampl | Engine
es fo
Electric | | | Combustion Chamber - Adjusti Power (Supercharging, Fuel Advanced Technologies in Inte Cells, etc.). Internal Combustion Engines Fu Instrumentation and Computer Control (Application and Design) Pre-requisites: EPES201 - Types of applications of measu Generalized configuration of measure of the computer comp | ing and (Injection, rnal Comundament in acteristic ring quar recording system ons | Control Fuel houstick tals by 2 nstrum and cos ntities ag of day | Air Non English Hey Hey 2 | mgine
Mixture
gines (
wood
0 | Perfor
Contr
(Gas E
J.B. | rmance
rol, etc
Engine, | -Incre | asing E
xampl | Engine
es fo
Electric | 3. Eren, H. (2018). Wireless sensors and instruments: networks, design, and applications. CRC Press. | | | Credit | | | (| Conta | ct Ho | urs | | | |------------|--|---|---|--|---|---|---|---|---|--| | Code | Name/Content | Hours | Lec | Tut
(2) | App.
Tut | Lab | Stud | Off.
Tut | Off.
Hrs | Total | | MTHS114 | Numerical Analysis | 3 | 2 | 2 | 0 | 0 | 0 | 0 | | 4 | | | Pre-requisites: MTHS102, MTHS | 5104 | | | . IS | | | | | | | | Basic concepts of floating- point an algorithm – Linear system Choleski) – Iterative methods (a polynomials and piecewise p Nonlinear equations: Newton's Numerical integration: Newton- Initial value problems for
ordination and multistep (Adams) | ns: dire-
Jacobi –
colynomi
metho
Cotes fo
nary diff | ct me
Gauss
al into
d and
rmulas
erentia | thods
s-Seid
erpola
its
s, Gau | (Gau
lle – S
ition,
discretussian
ussian: | SOR). A
splines
te vari
quadra | minatio
Approxi
s, disci
ants, f
ature ru | n, LU
mation
rete le
ixed p
les, co | factor
of Fur
east s
oint it
mposit | rization,
nctions:
quares.
eration.
e rules. | | References | Numerical Methods for Engineer
Author: Steven Chapra and Ray
Publisher: Macgraw Hill
7th edition(2014)
ISBN-13: 978-0073397924 | | anali | | | | | | | | Specialized Tracks of Engineering Profession | Elective Grou | p E-2 | | | | | | | | | | |--|--|--|---|---|--|--
--|--|---|--| | | | Credit | | | (| Conta | ct Ho | urs | | | | Code | Name/Content | Hours | Lec | Tut
(2) | App.
Tut | Lab | Stud | Off.
Tut | Off.
Hrs | Total | | EPES303 | Electric Drive System | 3 | 2 | 0 | 2 | 1 | 0 | 0 | | 5 | | | Pre-requisites: EPES201 | 300 - 3 | | 77 | 10 | | Ż. | | | ė. | | | Power Electronic Conve
Inverters. DC Motor Dr
Motors, Thyristor and Ch
Operation, Speed Contr
Operation, Motor Charact | ives: Str.
opper DC
ol, Invert | Drive:
er-fed | and
s. Indi
Drive | Opera
uction
es. St | tion of
Motor l
epper | DC M
Drives:
Motor | lotors,
Motor | Types
Structu | of Doure an | | References | P. C. Sen, Principles of El | | | | | | | rd ed., | Wiley. | 2013 | | MDPS352 | Machine Design | 3 | 2 | 0 | 3 | | | | | 5 | | | Pre-requisites: MDPS261 | | | | - | | | 7 | | | | | Design procedures – Fac | | | | | | | | | | | | of loading – Safety factors
various design calculation
of detachable joints: (thre
(welding, interference fitt
elements: springs, powe
Course project. | and allow
s. Interpres
aded joint
ng, rivet in
r screws. | vable setation
its, key
ng, riv
Appl | stress
and u
ys and
reting,
ication | es - Dusage
d splin
adhe
ns to | esign vof comes) – I
sion) –
small-s | variants
ponent
Design
Design
scale n | and in
data s
of perr
of so
nechan | version
heets.
manent
ome m
ical sy | ns. The Design to joints naching stems | | References | of loading – Safety factors
various design calculation
of detachable joints: (thre
(welding, interference fitt
elements: springs, powe | and allow
s. Interpres
aded joint
ng, rivet in
r screws. | vable setation
its, key
ng, riv
Appl | stress
and u
ys and
reting,
ication | es - Dusage
d splin
adhe
ns to | esign vof comes) – I
sion) –
small-s | variants
ponent
Design
Design
scale n | and in
data s
of perr
of so
nechan | version
heets.
manent
ome m
ical sy | ns. The
Design
t joints
naching
ystems | | References
MDPS241 | of loading – Safety factors various design calculation of detachable joints: (thre (welding, interference fitt elements: springs, power Course project. Richard Budynas, Keith N | and allows. Interpretaded joining, rivet in screws. | vable setation
its, key
ng, riv
Appl | stress
and u
ys and
reting,
ication | es - Dusage
d splin
adhe
ns to | esign vof comes) – I
sion) –
small-s | variants
ponent
Design
Design
scale n | and in
data s
of perr
of so
nechan | version
heets.
manent
ome m
ical sy | ns. The
Design
t joints
naching
ystems | | | of loading – Safety factors various design calculation of detachable joints: (three (welding, interference fitt elements: springs, power Course project. Richard Budynas, Keith N. McGraw Hill, 2014. | and allows. Interpretaded joining, rivet in screws. | vable setation
its, key
ng, riv
Appl | stress
and u
ys and
reting,
ication
Mech | es - Dusage
d splin
adhe
ns to | esign vof comes) – [sion) – small-s | variants
ponent
Design
Design
scale n | and in
data s
of perr
of so
nechan | version
heets.
manent
ome m
ical sy | ns. Th
Desig
t joints
nachin
ystems
Edition | | TATUS | of loading – Safety factors various design calculation of detachable joints: (three (welding, interference fitt elements: springs, power Course project. Richard Budynas, Keith NacGraw Hill, 2014. Manufacturing Processes | and allows. Interpretaded joining, rivet in screws. | vable setation
its, keying, riv
Appl
igley's | stress and uys and eting, ication Mech | es - Dusage displinadhe adhe anical | esign vof comes) – Ision) – small-s | variants ponent Design Design scale n eering [| s and in data si of perrin of sonechan Design, | heets.
manent
ome m
ical sy | ns. Th
Desig
t joints
nachin
ystems
Edition | | A STATE OF THE STA | of loading – Safety factors various design calculation of detachable joints: (thre (welding, interference fitt elements: springs, powe Course project. Richard Budynas, Keith N McGraw Hill, 2014. Manufacturing Processes Pre-requisites: PHYS001 Examination of metal cut Mechanics of cutting, chi | and allows. Interpretaded joining, rivet in screws. | vable setation its, key ng, riv Appl igley's 2 esses on, sh | stress and uys and reting, ication Mech | es - Dusage displin adhers to lanical ling turilane, vi | esign volumes) – [sion) – small-s Engine 2 ning, s velocity | variants ponent Design Design Cale n eering [| s and in data si of perrin of some chan Design, drillinons, me | heets. manentome mical sy 10th E | ns. The Design to Joints naching stems Edition milling to circles | | A STATE OF THE STA | of loading – Safety factors various design calculation of detachable joints: (three (welding, interference fitt elements: springs, power Course project. Richard Budynas, Keith Namufacturing Processes Pre-requisites: PHYS001 Examination of metal cut Mechanics of cutting, chitool material, tool wear, to | and allows. Interpresented joining, rivet in screws. Isbett, Shall ing proceur formation of life, expensed in the screws. | vable setation its, key ng, riv Appl igley's 2 esses on, sh conom | stress and uys and eting, ication Mech | es - Dusage d'splin adhe ns to lanical ling turilane, vonetal control | esign vor for commes) – [sion) –
small-sma | variants ponent Design Design scale n eering [haping relation | s and in data si of perrin of some chan Design, drillin ons, me | heets. manentome mical sy 10th E | ns. The Design to Joints naching stems of the Design to Joints naching stems of the Design to Joint | | TATUS | of loading – Safety factors various design calculation of detachable joints: (three (welding, interference fitt elements: springs, power Course project. Richard Budynas, Keith NacGraw Hill, 2014. Manufacturing Processes Pre-requisites: PHYS001 Examination of metal cut Mechanics of cutting, chit tool material, tool wear, to of metrology – Gauges | and allows. Interpresented from screws. Isbett, Shipping proceurs formation of life, experienced from screws. | vable setation
its, keying, riv
Appl
igley's
2
2
2
2
2
2
5
5
5
5
6
6
7
7
8
8
8
8
9
9
9
9
9
9
9
9
9
9
9
9
9
9 | stress and uys and reting, ication Mech | es – Dusage displinadhens to lanical ling turilane, vinetal coments | esign volumes) – Ision) – small-smal | variants ponent Design Design Cale n eering [haping relation Introduction lear ar | s and in data si of perrin of some chan Design, drillin ons, me | heets. manentome mical sy 10th E | ns. The Design of the Joints o | | | of loading – Safety factors various design calculation of detachable joints: (three (welding, interference fitt elements: springs, power Course project. Richard Budynas, Keith Namufacturing Processes Pre-requisites: PHYS001 Examination of metal cut Mechanics of cutting, chitool material, tool wear, to | and allows. Interpresaded joining, rivet in screws. I 3 ing proce p formation of life, experienced sharp trical sharp in the strical s | vable setation its, key ng, riv Appl igley's 2 esses on, sh conom in m pe: str | stress and u ys and reting, ication Mech o includ ear p y in n neasur aightn | es – Dusage d splin adhers to lanical ling turning turning turnetal comments are seen are seen are lane, where the which is a and the | esign vof comes) – [sion) – small-s Engine 2 ning, s velocity tutting. t – Lind | variants ponent Design Design Cale in i | s and in data si of perring of some chan Design, drilling ons, meand ang | neets. manentome mical sy 10th E | ns. The Design of the Joints o | | 1000 TO 1000 | | Credit | | | (| Conta | ct Ho | urs | | | |--------------|---|--|-----------------------------------|-------------------------------------|---|--|---|-------------------------------|---------------------------------------|--| | Code | Name/Content | Hours | Lec | Tut
(2) | App.
Tut | Lab | Stud | Off.
Tut | Off.
Hrs | Total | | MDPS217 | Machine Drawing | 3 | 1 | 2 | 0 | 2 | | | | 5 | | | Pre-requisites: INTS001 | 20 | | | 20 10 | | | | *** | CA. | | | Sketching and drafting of
drawing, working drawing
tolerances, surface rough
devices, keys, splines, g
riveting conventions. State
aided graphics application | ng, dimen
nness. Sta
lears, pulle
indardization | sionin
ndard
eys, be | g, lim
mach
earing: | nits, fi
ine ele
s, pipe | ts, Geo
ements
e conne | ometric
(thread
ections, | al and
ds, fast
etc.) - | dime
eners,
Weldi | nsiona
lockin
ing an | | References | David A. Madsen, David
Cengage Learning, 2016 | P. Madser | , Engi | neerir | ng Dra | wing ar | nd Desi | ign, 6th | Edition | n, | | MDPS432 | Pressure Vessels and
Piping | 3 | 2 | 2 | 0 | 0 | 0 | 0 | | 4 | | | Pre-requisites: 85 credit | s + AA Ap | roval | | | | | 7 | | | | | Introduction to ASME Be and 2. B31 code series. Failure theories. Design various geometries. Design destructive examination selection of piping suppackages, course projection. | Material s
for internation of operand testing
ports. Cor | election
and enings
g. Pipi | on. Ba
extern
and a
ng str | sic pres
al pres
nozzle
ress a | inciples
ssure. I
s. Fabi
nd flex | in des
Design
rication
ibility a | of end
requirend | pes of
closur
ements
s, desi | f loads
es with
s. Non
gn and | | References | Baldev Raj, B.K. Choud
Codes, Standards, Desig | | | | | | | | | | | MEPS333 | Automotive Systems Pre-requisites: MEPS20 | 9 N3 | 2 | 0 | 2 | llg i | 0 | F02 | III | 5 | | | ICE Driven systems, E
Automotives – Emissio
Advances in Automotive | lectrical d | | | | | | | | | | References | Engineering Fundamenta | als of the in | ternal | comb | ustion | engine | s, Will | ard W F | ulkrab | ek | | 3000 TAN 1 | | Credit | | | (| Conta | ct Ho | ırs | | | |------------|---
---|--|--|--|-------------------------------|---|---|--|--| | Code | Name/Content | Hours | Lec | Tut
(2) | App.
Tut | Lab | Stud | Off.
Tut | Off.
Hrs | Total | | MEPS402 | Sea Water Desalination | 3 | 2 | 0 | 2 | 1 | 0 | 0 | | 5 | | | Pre-requisites: MCNS326. | | | | | | | | | • | | | Introduction - Basics of De
Chemical - Co-Generation
Sources - Economics of De | Systems | - Des | | | | | | | | | References | Fundamentals of Salt W Ettouney Desalination: Water from Renewable energy technoreddine Ghaffour, Matth Sustainable Water for th Isabel C. Escobar and And | n Water,
nologies
eus F.A
e Future | Author
for war
Goose
Wate | (s): Jater de
en, Jo
r Rec | ane Ki
salina
chen l | ucera
tion by
Bundsc | Hacene
huh | e Mahn | | | | MEPS403 | Heat Exchangers Design
Pre-requisites: MCNS326 | 3 | 2 | 0 | 2 | 角 | 0 | 0 | | 5 | | Spec | Computer aided engineeri module; one dimensional review; pipe and tubing sta system behavior & flow rextended surface heat exchanger types; basic danalysis, log mean temper exchangers; heat exchangers; heat exchangers; double pipe hexchangers; plate & shell boilers and evaporators; and wet cooling towers; co | system andards; networks; transfer; lesign moerature ager present exchanger | flow all
hydrau
pump
longit
lethod
method
ssure
angers
change
d radia | nalysicalic recording to type udina of he drop drop s; she ers; a stors, | s; ger
sistan
es & a
I fins
eat ex
orced
and
II & tu
opplica
air co | neral applications of oled or | pplicational frictions; hers : extion cong powers in exchange the exchange of | ons; flu
on and
leat tra
perfor
ffective
orrelation
ver; founders;
exchan-
cooled | minor
minor
mance
mance
eness
ons fo
uling o
compa
ger de
l conde | chanics losses review r; hea n NTU r hea of hea oct hea sign to ensers | | References | Fundamentals of Heat E Heat Exchanger Design Fundamentals of Heat a | Handbo | ok, 2nd | ded/ | Kuppa | an Thul | ukkana | m | Sekulio | 2 | | | | Credit | | | (| Conta | ct Ho | urs | | | |--------------------------------|--|--|-------------------------------------|-------------------------|---------------------------------------|----------------------------------|---|--|---------------------------------------|----------------------------| | Code | Name/Content | Hours | Lec | Tut
(2) | App.
Tut | Lab | Stud | Off.
Tut | Off.
Hrs | Total | | EPES450 | Programmable Logic
Controllers | 3 | 2 | 2 | 0 | 0 | | | | 4 | | | Pre-requisites: EPES303 | 32. | 0 | 21 | 40 A | | | | 100 | | | | Selecting a proper PLC co
wiring techniques. Basics of
processing). Programmin
techniques. Networking.
(SCADA) system integrated | of progra
ig seq.
Building
d with a l | mming
ential
simple
PLC fo | cor
e super sequence | and wo
itrol
perviso
uential | ord programs, tasks. ory contro | grammi
Struct
ntrol a
I proble | ing, and
tured
and date
ams. Co | alogue
progra
ta acq
ourse p | value
ammin
juisitio | | References | F. Petruzella, Programmab | | Contro | ollers, | 5 th ed | ., McGi | raw Hill | , 2016. | | | | MDPS381 | Fundamentals of Industrial
Engineering | 3 | 2 | 0 | 3 | | | | | 5 | | | Pre-requisites: NONE | | | 14, | | | 4 | | | | | References | and current state of the fi-
industrial engineering.
"Introduction to Industrial E | | | | | | | | 100 | | | MDPS382 | Engineering Economy and
Financial Management: | | 2 | 2 | | | | | | 4 | | 0 | Pre-requisites: E-A (GENS | 120) | nett em e | | | | 2 | | | - | | 206 | principles of economics | | ance a | as th | ey ap | ply to | engine | ering | projec | ts and | | opo | organizations, including til | | | | | | | | | | | | financial accounting, budge | | | | | | | | | | | References | "Engineering Economic An
Eschenbach. | alysis" b | y Dona | ald G. | Newn | an, Jer | ome P. | Lavell | e, and | Ted G | | MDPS383 | Operations Research I | 3 | 2 | 0 | 2 | 1 | | | | 5 | | Property and the second second | Pre-requisites: MTHS102 | | | | | | | | | | | | Introduction to Operations
Graphical solution. The
Transportation and assignr | Simple | x al | gorithi | m. D | uality | and | sensitiv | ity a | oblems
nalysis | | References | Frederick Hillier, Gerald Lie
McGraw Hill, 2021. | | | | | | | | | ition, | | Jgrain oo | urses (Compulsory) | | | | | | | | | | |------------
--|--|--|---|---|--|---|--|--|--| | | | Credit | | | | onta | ct Ho | and the latest designation of des | | | | Code | Name/Content | Hours | Lec | Tut
(2) | App.
Tut | Lab | Stud | Off.
Tut | Off.
Hrs | Total | | MEPS305 | Applied Control Technologies
for Energy System | 3 | 2 | 2 | 0 | 0 | 0 | 0 | | 4 | | | Pre-requisites: MTHS003, ME | PS224 | | | | | | | | | | References | Part-1(Theory of Control): Powsimulation, analysis. Control stresponse, classical methods – frequency response. Part-2 (Basics of Hydraulics): engineering Automatic control control, Hydraulic pumps and power control – pressure and 1- Several Class Notes, Self-Sinstructor 2- Katsuhiko Ogata, "Modern of 3-"Instrumentation and Control 4. E-Learning Software and Vilnc.", fluidpowerzone.com, a Note of Self-Sinstrumentation and Control 4. E-Learning Software and Vilnc.", fluidpowerzone.com, a Note of Self-Sinstrumentation and Control 4. E-Learning Software and Vilnc.", fluidpowerzone.com, a Note of Self-Sinstrumentation and Control 4. E-Learning Software and Vilnc." | This is a virtual L motors - flow valve Study File Cont of E | Self Sab so Contres - // Contres - // Contres - // Contres Con | Study
ftware
rol va
Applica
eports
eering
ntrol I | and E
e- Con
lives -
ations
and N | -learn
tents:
Trans
for pr
Materia | ing ma
basics
missio
actical
ils prep
lall & P | op – re
y – Boo
terial u
of Hydra
n com
Hydra
pared b
EARS
w.pace
strial T | eduction de diamento diamen | on,
gram -
an
ts of
cuits.
arse
010
com | | MEPS316 | UT 84604 Air and Water Pollution and Quality Monitoring | 3 | 2 | 2 | 0 | 0 | 0 | 0 | | 4 | | | Pre-requisites: MCNS202, ME | PS203 | | - | | | | | | | | Cna | Fundamentals of gas and aer the country; theory of opera | osol me | | | with | empha | sis on | major | pollut | ants ir | | | | Cradit | | | C | onta | ct Ho | urs | | | |------------|---|--|--|-----------------------------------|--|--------------------------------------|--|---------------------------------|-----------------------------|------------------------------| | Code | Name/Content | Credit
Hours | Lec | Tut
(2) | App.
Tut | Lab | Stud | Off.
Tut | Off.
Hrs | Total | | MEPS320 | Fundamentals and
Applications of Solar Energy
Pre-requisites: MCNS326 | 3 | 2 | 0 | 2 | 1 | 0 | 0 | | 5 | | | Solar
energy potential in Egyptosolar thermal applications-diagram-assessment of yield temperature concentration of solar cooling-solar desalination | flat plat
and so
solar en | te col
plar fr
ergy- | llector
action
high t | rs(waten-
n-evacentempe | er-air)-
uated
rature | effici
tube
concer | ency
collect
ntration | and s | Sanke | | References | Solar Engineering Of Thermal Pr
Duffie, William A. Beckman, Nath | ocesses: | | | | | | | n A. | 71 | | MEPS332 | Laboratory of Energy
Systems | 2 | 2 | 0 | 0 | 3 | 0 | 0 | | 4 | | References | turbine – testing of industrial c
testing of heat pump 1. Institution of Mechanical Engi
Performance, Fuel Economy 2. Grimm, N. R., & Rosaler, R. (
McGraw-Hill. 3. Stoecker, W. F. (1998). Indus 4. Dick, E. (2015). Fundamental
Springer. | ineers Strand Emis
C. (1998) | aff. (20
ssions.
. HVA | 013). I
Elsev
C syst | nternal
vier Sci
ems ar | Comb
ience 8
nd com | ustion E
Techn
ponents | Engines
ology.
s hand | s:
book.
ion. | | | MEPS404 | Nuclear Energy | 3 | 2 | 2 | 0 | 0 | 0 | 0 | | 4 | | References | Pre-requisites: MEPS209 Introduction and principles of energy in nuclear reactor of (PWR), boiling water reactors (FBR); the future of nuclear fundamentals of risk assessmentals of Thermal at Tomio Okawa (editor), Shoji M | ore; nuo
(BWR);
ar fusion
entand i
and Nucle | clear
gas-c
n; rea
risk m
ear Po | powe
ooled
actor
itigati | r plan
reactor
safety
on in r | its; proposes (G
y; pow
nuclea | essuriz
CR); fa
ver pla
r engin | ed wa
st breant si
eering | ater re
eder re
te se | eactors
eactors
ection | | | | Credit | | | C | onta | ct Ho | urs | | | |------------|--|---|---|---|--|--|---|--|---|--| | Code | Name/Content | Hours | Lec | Tut
(2) | App.
Tut | Lab | Stud | Off.
Tut | Off.
Hrs | Total | | MEPS415 | Power Generation | 3 | 2 | | 2 | | | | | 4 | | | Pre-requisites: 85 credits + AA | Approv | al | | · | | | | 100 | | | | Review Of Thermodynamics Turbine Components, Steam Turbine Governing Systems, Turbine Instrumentation, Turbine Instrumentation, Turbine Instrumentation, Turbine Instrumentation, Gas Gas Turbine Materials, Lub Chamber Design, Gas Turbine Performance Characteristics, Gas Turbine Emission Guidel Power generation Plants, S Generation Plants, Application Cogeneration Application Cor Combined Cycle Performance Cycles Co- Generation Plants | Turbine Steam or rication ne Instruction Gas Turbines and election ions of neideration, Power | Main
Chest
overni
Comp
and
ument
bine C
d Cons
Cons
Co-C
ons, E
hhance | tenants and Sang Sang Sang Sang Sang Sang Sang Sang | Ice, Police, P | ower Ses, Tue, Gas, Sing of Co and Cond Tections, Sing on the conditions, Sing on the
conditions, Sing of Conditions, Sing on the conditions of co | Station
rbine I
Turb
tors, A
Sas Tu
ol Syst
intenar
ple-Sha
mbined
Combin
chnical
Econor | Performance Consimics Considerate Consider | rmand
tive D
undam
ow Tu
Coml
Gas T
onsider
nbined
les ar
cycle
ideration | e, The evices, entals, oustion Turbine rations, d-Cycle and Co-Plants, ons for | | References | Powerplant Technology By Thermal Power Plant Contr
by David Lindsley, John Grist, | ol and In | strum
rker. (| entat
2017 |) | ne con | trol of | boilers | and H | HRSGs | | MEPS420 | 3. Power Generation Technology | The second second second | Paul | Breez
2 | e | | | | | 3 | | MEPS420 | Fundamentals of Energy in
Buildings | 2 | 1 | 2 | | _ | - | | | 3 | | Spec | Pre-requisites: MEPS421 Human comfort, cooling loads Energy consumption in buildin Sustainability development ga design project is required. Stu course to solve a particular pre innovative building designs, te outstanding sustainable buildin | igs. Deta
ols in bu
dents wi
oblem. T
echnologi | iled H
ildings
Il use
he stu | VAC
s (i.e.,
the pi | composition, Susta
rinciple
s will b | uter loa
ainabili
es and
e aske | ad esti
ity Cate
inform
ed to p | mation
egories
ation (
ropose | tips.
s). One
given i | e
n the | | References | ASHRAE GreenGuide Design
5th Edition | , Constru | uction | , and | Opera | ition of | Susta | inable | Buildi | ngs | | | | Credit | | | C | onta | ct Ho | urs | | | |------------|---|--|-------------------------------------|---------------------------------------|---------------------------|--|-------------------------------|-----------------------------|-----------------------------|--------------------------| | Code | Name/Content | Hours | Lec | Tut
(2) | App.
Tut | Lab | Stud | Off.
Tut | Off.
Hrs | Total | | MEPS421 | Fundamentals of
Refrigeration and Air
Conditioning Design
Pre-requisites: MCNS326, ME | 3
PS219 | 2 | 2 | 0 | 0 | 0 | 0 | | 4 | | | Single-stage vapor compression Multi-stage vapor compression Introduction to air conditioning Fundamentals of HVAC designation for Conditioning Systems Air transmission through build Air distribution within spaces | n system
and ver
n calcula
ings and | ntilatio
ations | | | | lection | | 8 | | | 2.6 | Piping Design and pumps sele | | -1.70-1 | | M 11 | | 1 1111 | , | _ | | | References | Air-Conditioning System Design | THE RESERVE THE PERSON NAMED IN COLUMN TWO | - | 1 | - | Acres de la companya del la companya de | 1 | _ | - | - A | | MEPS430 | Wind Energy Systems Design
Pre-requisites: MEPS224 | 2 | 2 | 0 | 2 8 | 0 | 0 | 0 | | 4 | | | Geophysics of wind resource
turbine performance; design I
blade design and its optin
mechanical design and safe
electrical systems for wind tur | oads; co
nization;
ty factor | mate | ual d | esign
prope | of hori | zontal-
and n | axis w | ind tu | rbines | | References | Wind Energy Explained Theor
McGowan, Anthony L. Rogers | y, Desig | n and | Appli | cation | by Ja | mes F. | Manw | ell, Jo | n G. | | MEPS446 | Applications of Turbomachinery Pre-requisites: MEPS436, 102 | of En | gir | lee | rin | gP | rofe | essi | on | 4 | | | Fans, Compressors, Pumps Machines in series, Machines Manufacturer's Catalogues (apumps, centrifugal fans, axial – control of turbomachinery Maintenance – Troubleshootin | and Tur
in parall
air comp
fans etc
in vario | el – S
resso
c.) - V
us ap | electi
rs, do
ibratio
plicat | on & I
omest
on and | nstalla
ic wate
l Noise | tion re
er pun
e proble | quirem
nps, cl
ems ar | ents a
nilled
nd solu | s per
water
utions | | References | Fluid Mechanics and Thermoo | | | | achine | er-7- E | dition, | by S. | L. Dixo | n, | | | | Cundit | Contact Hours | | | | | | | | |------------|--|--|--|--|--|--|---|---|---|-----------------------------| | Code | Name/Content | Credit
Hours | Lec | Tut
(2) | App.
Tut | Lab | Stud | Off.
Tut | Off.
Hrs | Tota | | MEPS472 | Automatic Control | 3 | 2 | 2 | 0 | 0 | 0 | 0 | | 4 | | | Pre-requisites: MEPS224 | 12 | | - | - | | | | | • | | | control system components, Appower systems, and thermal sy Analysis of systems in state sp Feedback control system – Constate error for the test input signification coefficient and error series – Thigher order systems to second studies. Course project. | vistems -
ace - contro system
nal using
ransient
d order | - Sign
ontroll
stem of
g stat
t responsive
system | nal flor
lability
chara-
ic erro
onse
ms. M | w grap
y – obs
cteristi
or coe
charac
IATLA | oh – St
servab
cs – E
fficient
teristic
B com | ability – particular points – Dy cs – Apputer s | of lines
oole pla
alysis
namic
oproxina
imulat | ar syst
aceme
- Stea
error
nation | ems -
ent –
ady
of | | References | Modern control engineering Automatic Control Systems: Automatic Control Systems | With M. | ATLA | B by | S. Pala | ani | | | | | Specialized Tracks of Engineering Profession | | ective Courses | | | | | | | | | | | | |---------------|---|---
--|---------------------------|----------------------------|----------------------------|--------------------|-------------|-----------------|---------|--|--| | Elective Grou | p E-3 | | | | | ************ | | | | | | | | | | Credit | Contact Hours | | | | | | | | | | | Code | Name/Content | Hours | Lec | Tut
(2) | App.
Tut | Lab | Stud | Off.
Tut | Off.
Hrs | Total | | | | MEPS328 | Fine Measurements and
Laser Diagnostics in Energy
System | 3 | 2 | 2 | 0 | 0 | 0 | 0 | | 4 | | | | | Pre-requisites: MCNS101, MC | CNS202 | | Ÿ | | | | | | 100 | | | | | field - Rayleigh - Raman - measurements - Test cases. | Transducers - Pressure measurements instruments - Velocity and flow measurement techniques - Introduction to laser - Types of lasers - LDV and PIV technique for flow field - Rayleigh - Raman - LIF for radicals - Imaging techniques for 2-D and 3-D measurements - Test cases. | | | | | | | | | | | | References | Dunn, P. F., & Davis, M. F. and science. CRC press. Dunn, W. C. (2018). Funda McGraw-Hill Education. Lipták, B. G. (Ed.). (2003) Measurement and Analysis Lipták, B. G. (Ed.). (2018 control and optimization (V | amentals
Instrum
s (Vol. 1) | of included inc | dustria
ngine
pres | al instr
ers' H | ument | ation a | nd pro | ocess
One: F | control | | | | MEPS413 | Industrial Process Heating
and Cooling | 3 | 2 | 2 | 0 | 0 | 0 | 0 | | 4 | | | | Spe | Pre-requisites: MEPS320 Assessment of process he estimation of area requireme systems-thermal storage-eccertification-absorption coolin heating and cooling. | nts-hybri
onomics
ig driver | dization
of ind
by | on wit
ustria
solar | th con
I proce
energ | ventio
ess he
gy-eco | nal ste
at- con | am ge | nerato | ors and | | | | References | Radiant Heating and Cooli | ng Hand | book | by Wa | atson | R. | | | | 1 1 1 | | | | | Combined Heating, Cooling Integrated Approach to Energy Solar heating and cooling soly Sarbu, loan; Sebarchievicing | y Resou | rce O | ptimiz | zation | by Ne | I Petch | ners | | | | | | | | Crodit | Contact Hours | | | | | | | | | |------------|--|--|---|--|---|--|--|---|--|---|--| | Code | Name/Content | Credit
Hours | Lec | Tut
(2) | App.
Tut | Lab | Stud | Off.
Tut | Off.
Hrs | Tota | | | | Energy Auditing | 3 | 2 | 2 | 0 | 0 | 0 | 0 | | 4 | | | MEPS422 | Pre-requisites: MEPS421 | | | | | | | 972 | 67 | | | | | Introduction; quick review of enebills; financial analysis of energy efficiency through: high-efficiency (boilers and furnaces), HVAC, systems, controls, efficient insulate report. The course contains at least one | conserva
cy lighting
combine
lation and | ation/e
g, imp
d hea
d refra | nergy
rovem
t and
ctories | efficier
nent an
power
s, switc | ncy opposed tune general triangle to the contract of contr | oortuniti
up of
ration,
o other | es; imp
combu
energy
fuel ty | oroving
istion s
mana
pes; th | energ
system
geme
ne aud | | | | presented | | - | | | | | | | F. F. F. W. C. I S | | | References | Commercial energy auditing ref | | | | | | | t to do | | | | | MEPS425 | Residential Energy Auditing and
Renewable Energy | a impiove | ment, | Author | (S): F | n | 0.0. | narbuc
0 | k, Stan | 4 | | | WIEP5425 | Pre-requisites: 85 Credits | - 3 | | | - 0 | 0 | - | U | | 4 | | | | Introduction. Different Sources | | | 0.1 | | A . | - 71 - 4- 71 | | 0.1 | | | | References | Turbines and Hydraulic Power - 1. Fundamentals of Renewable Er Carlos Ordonez | nergy Pro | cesses | , Four | th Editi | on by A | | | Rosa, Ju | ian | | | MEDCARO | 2. Renewable Energy Technologie | | 1-Claud | | | | | 0 | | A . | | | MEPS432 | Design of Renewable Energy
Equipment | 3 | 2 | 2 | 0 | 0 | 0 | 0 | | 4 | | | Spec | Pre-requisites: MEPS320 General overview of electricity operations and state of technologelectronic circuits in renewable to attributes; engineering principle energy storage; batteries; double flywheels; demand-side issues: time-of-use tariff; fundamentals management; electricity market regulatory policy aspects. | ogy; hydro
echnologi
es of ele
le-layer c
electrical
of dema
t basics; | es; ec
ctrical
apacite
load
nd-sid
integ | therman
onom
stora
ors; su
curve;
e mai
ration | al, clos
ics of v
ge tec
uperco
period
nagem
of rer | ed system of the control cont | tem fue
technol
pies: ele
ig magr
electricit
ficiency
e gene | el cells;
logies;
ectrical
netic en
ty tariff
impro-
ration | role o
enviror
vs. cl
nergy s
structi
vemen | f power
nmenta
hemica
storage
ure an
ts; loa | | | References | Solar PV Power: Design, Manut
Author(s):Rabindra Kumar Satpatt Solar PV power design, manufa
Rabindra Satpathy Solar Hybrid Systems: Design a | ny, V∈nka
acturing ar | teswar
nd app | lu Par
lication |
nuru
ns from | sand to | o systen | ns, Auti | | | | | *************************************** | | Credit | | | C | onta | ontact Hours | | | | | | |---|--|---|---|-----------------------------|--|--|--|--|--|--------------------------|--|--| | Code | Name/Content | Hours | Lec | Tut
(2) | App.
Tut | Lab | Stud | Off.
Tut | Off.
Hrs | Total | | | | MEPS444 | Energy Efficiency | 3 | 2 | 2 | 0 | 0 | 0 | 0 | | 4 | | | | | Pre-requisites: MEPS209, MCNS327 | | | | | | | | | | | | | | Energy Resources, energy efficiency technologies, integration of renewable Energy with energy efficiency measures. Supply and demand side management. Industrial energy efficiency. Energy efficiency in residential, commercial, tourist and transport sectors. Energy efficiency policies, standards, codes and benchmarking. Energy auditing and accounting, life cycle Assessment, Economics and financing of Energy Efficiency options. Environmental mpact of energy efficiency. | | | | | | | | | | | | | References | Energy Efficiency Indicators: Fun Energy Efficiency and Manageme Energy Efficiency: Concepts and by Daniel Martinez (Author), Ben W | damentals
ent for Eng
Calculatio | on Sta
ineers
ns 1st | tistics
by Me
Edition | hmet K | anoglu,
Edition | 2020 | | | | | | | MEPS475 | Hydroelectric Power Plants | 3 | 2 | 2 | 0 | 0 | 0 | 0 | | 4 | | | | | Pre-requisites: MEPS436, ME | PS224 | | | | A. | | | | | | | | References | Hydraulic Power - Water H
Stations.
Hydroelectric Power Plants: S | | tep by | G | *. DW, 5-10 | | la Per | | dulle | | | | | MEPS431 | Sustainability and Design for
Environment | 3 | 2 | 2 | 0 | 0 | 0 | 0 | | 4 | | | | | Pre-requisites: 60 Credits | | | | | | | Chie- | | 224 | | | | | Analysis and design of techno | ology sys | tems | within | the c | ontext | of the | enviro | nment | , | | | | Spec | economy, and society. Applie prevention, life cycle assessment practice, opportunities, and represents and discusses the chife Cycle Assessment. Uses and services. The analysis eit superior alternative on the bases | nent, and
ble of eng
omputati
Life Cyc
ther ident | exter
ineeri
on str
le Ass
tifies o | ng, m
ucture
essm | production and control of the contro | t respondent,
data so
analy:
s for in | and po
and po
ources
ze mat
oprove | ty. Exa
ublic p
for en
erials,
ments | amines
olicy.
vironm
produ
or sele | nental
cts,
ects a | | | | References | Engineering Applications in Bradley Striebig Adebayo A. Sustainable Design: The S. Vallero, Chris Brasier | Sustain
Ogundip | able C
e ،Ma | esigr
ria Pa | and l | Develo
kis | pment | , SI Ed | dition b | у | | | | Code | | Cundit | Contact Hours | | | | | | | | | | |------------------------------------|---|--|-----------------------------|--|--|---|---|--|------------------------------|--------------------------------|--|--| | | Name/Content | Credit
Hours | Lec | Tut
(2) | App.
Tut | Lab | Stud | Off.
Tut | Off.
Hrs | Total | | | | MEPS438 | Hydrogen technologies for a
sustainable energy system | 3 | 2 | 2 | 0 | 0 | 0 | 0 | | 4 | | | | | Pre-requisites: MEPS203 | | | | | | | | | | | | | | Hydrogen from an energy sys Hydrogen and renewable e Hydrogen applications - Ou | nergy ca | rriers | - Carl | | | | | | | | | | References | Hydrogen and Fuel Cell Hydroge 3. Hydrogen and Fuel Cells. Sorensen (Auth.) | n Stcrag | e and | Tech | nologi | ies by | Töpler
Reimu | , Joch | en Leh
ugeba | mann | | | | MEPS439 | Fundamentals of
Photovoltaics | 3 | 2 | 2 | 0 | 0 | 0 | 0 | | 4 | | | | | | Pre-requisites: MEPS209 | | | | | | | | | | | | | technologies and various co | | | | | | 1461210 | H GIIIC | | e loce | | | | | mechanisms, characterization
and risk analysis. Other topic
context of markets, policies, | s covere | d incl | ude p | hotovo | | ability, | life-cy | cle ar | nalysis | | | | References | and risk analysis. Other topic context of markets, policies, 1. Honsberg, C., and S. Boy CD-ROM. [A free online resource.] | s covere
society, a
wden Ph
urce.] | ed incl
and er
notovo | ude p
nviron
oltaics | hotovo
ment.
s: Dev | oltaic to | ability,
echnology
System | life-cy
ogy ev
s and | cle ar
colution
Applie | nalysis
n in the
cations | | | | References | and risk analysis. Other topic context of markets, policies, 1. Honsberg, C., and S. Boy CD-ROM. [A free online resout 2.
Wenham, S., M. Green, et ISBN: 9781844074013. [Prev 3. Luque, A., and S. He | s covered society, a wden Plance.] al., eds. lew with gedus, | Appli
Googleds. | ude province of Pr | hotovo
ment.
s: Dev
notovo
oks] | ices, solitaics, | ability,
echnology
System
2nd econotovo | life-cy
ogy ev
s and
d. Rou | Application | nalysis
n in the
cations | | | | Spe | and risk analysis. Other topic context of markets, policies, 1. Honsberg, C., and S. Boy CD-ROM. [A free online resout 2. Wenham, S., M. Green, et ISBN: 9781844074013. [Prev 3. Luque, A., and S. Helengineering. John Wiley & Sc | s covered society, a wden Plance.] al., eds. lew with gedus, | Appli
Googleds. | ude province of Pr | hotovo
ment.
s: Dev
notovo
oks] | ices, solitaics, | ability,
echnology
System
2nd econotovo | life-cy
ogy ev
s and
d. Rou | Application | nalysis
n in the
cations | | | | References Specific Group MEPS407 | and risk analysis. Other topic context of markets, policies, 1. Honsberg, C., and S. Boy CD-ROM. [A free online resout 2. Wenham, S., M. Green, et ISBN: 9781844074013. [Prev 3. Luque, A., and S. Helengineering. John Wiley & Scott | s covered society, a wden Plance.] al., eds. lew with gedus, | Appli
Googleds. | ude province of Pr | hotovo
ment.
s: Dev
notovo
oks] | ices, solitaics, | ability,
echnology
System
2nd econotovo | life-cy
ogy ev
s and
d. Rou | Application | nalysis
n in the
cations | | | | Spe(| and risk analysis. Other topic context of markets, policies, 1. Honsberg, C., and S. Boy CD-ROM. [A free online resout 2. Wenham, S., M. Green, et ISBN: 9781844074013. [Prev 3. Luque, A., and S. Helengineering. John Wiley & Scott E-4 Fire Extinguishing Systems | s covered society, a wden Piurce.] al., eds. iew with gedus, ons, Ltd, | Appli
Googleds.
2003. | ude priviron bitaics ed Pi le Boo Hand ISBN | notovo
notovo
oks]
lbook
l: 9780 | ices, S
Itaics,
of Pl | ability,
echnology
System
2nd echotovo
1965. | life-cy
ogy ev
s and
d. Rou
litaic | Application | cations
, 2006 | | | | Spe(| and risk analysis. Other topic context of markets, policies, 1. Honsberg, C., and S. Boy CD-ROM. [A free online resout 2. Wenham, S., M. Green, et ISBN: 9781844074013. [Prev 3. Luque, A., and S. Helengineering. John Wiley & Scott | s coveres society, a wden Piurce.] al., eds. iew with gedus, ons, Ltd, | Appli
Googleds.
2003. | ude priviron oltaics ed Pri le Boot Hand ISBN | notovo
notovo
oks]
lbook
l: 9780 | oltaic to
ices, so
ltaics,
of Pi
047149 | ability,
echnology
System
2nd econotovo
1965. | life-cy
ogy ev
s and
d. Rou
litaic | Applied tledge | cations
, 2006
e and | | | | Spe(| and risk analysis. Other topic context of markets, policies, and S. Boy CD-ROM. [A free online resource. Wenham, S., M. Green, et ISBN: 9781844074013. [Prev 3. Luque, A., and S. He Engineering. John Wiley & Some E-4 Fire Extinguishing Systems Pre-requisites: MEPS224, ME | s covered society, a wden Plance.] al., eds. iew with gedus, ons, Ltd, PS203 - Explosinydrants | Appli
Googleds.
2003. | ed Phandish of Pire N | notovo
notovo
oks]
lbook
l: 9780 | oltaic to
ices, S
Itaics,
of Pi
047149 | ability, echnologystem 2nd echnologystem 01965. | life-cyogy events and Routellife (| Applied the Science Spread | cations , 2006 e and | | | | | | Credit | Contact Hours | | | | | | | | | | |--------------------|---|--|-------------------------------------|--------------------------------|------------------------------|--|--|-----------------------------------|---------------------------|---------------------|--|--| | Code | Name/Content | Hours | Lec | Tut
(2) | App.
Tut | Lab | Stud | Off.
Tut | Off.
Hrs | Total | | | | MEPS411 | Concentrated Solar Power (CSP) | 2 | 2 | 0 | 2 | 0 | 0 | 0 | | 4 | | | | | Pre-requisites: MEPS320 | | | | | | | | | | | | | | Low, medium and high temperature applications- parabolic trough concentrator-linear Fresnel concentrator- Sterling Dish concentrator-heliostats/Solar tower-heat transfer fluid-use of CSP with Rankine, combined, Gas Turbine and Sterling cycles- thermal storage strategies- Operation and Maintenance practices-project planning-Economics. | | | | | | | | | | | | | References | The performance of concentrated Heller, Peter Solar Engineering Of Thermal Probeckman, Nathan Blair | solarpow | er syst | ems: r | nodellir | ng, mea | suremer | nt and a | ssessm | ent by | | | | MEPS412 | Energy Storage | 2 | 2 | 0 | 2 | 0 | 0 | 0 | , | 4 | | | | | Pre-requisites: MEPS320 | | | | | | | 1 | | | | | | | | pelectric | | | | | | | | torage | | | | | compressed air storage-hydr
storage- super capacitors- h
technologies. | | | _ | | | The state of s | | ng ma | agnetic | | | | References | storage- super capacitors- h
technologies. 1. Renewable Energy Convers
2. Thermal Energy Storage: S | ydroger
sion, Tra | nsmis | sion, | rage and S | mediu | m-com | nt Sor | ng man | agnetion
storage | | | | References MEPS414 | storage- super capacitors- h
technologies. 1. Renewable Energy Convers | ydroger
sion, Tra | nsmis | sion, | rage and S | mediu | m-com | nt Sor | ng man | agnetion
storage | | | | | storage- super capacitors- h
technologies. 1. Renewable Energy Convers
2. Thermal Energy Storage: S
Ibrahim Dincer, Marc Rosen | sion, Tra
ystems a
2
stion mo
in CFD | nsmisend Apart 2 dels - Flow ow ar | ssion, pplica Buo, in sund he | and Sations, 2 yant fludden | torage
Secon
0
ows ar
pipe c | by Be de Edition of Flow ontraction a co | nt Son
on [2 6
0
s insid | ng man of seensen ed.] by | agnetic
storage | | | | | | Cundit | Contact Hours | | | | | | | | | | |------------
--|---|---------------|------------|-------------|---------|----------|-------------|-------------|--------|--|--| | Code | Name/Content | Credit
Hours | Lec | Tut
(2) | App.
Tut | Lab | Stud | Off.
Tut | Off.
Hrs | Total | | | | MEPS417 | Pollution control equipment
design | 2 | 2 | 0 | 2 | 0 | 0 | 0 | | 4 | | | | | Pre-requisites: MCNS202, MEPS203 | | | | | | | | | | | | | | Review of fluid mechanics;
settling chambers, cyclones,
sulfur oxides; treatment of nitr | baghous | se filte | ers, e | lectro | static | precipit | tators; | treatn | | | | | References | Air Pollution Control Equipment Schifftner Air Pollution Control Equipment Schifftner Air Pollution Control Equipment Schiff | nent Cal | culatio | ons 1s | st Editi | ion, by | Louis | Theod | | eth C | | | | MEPS418 | by H. Brauer (Author), Y. B. G | | | | | t: Kina | | | | | | | | VIEP5418 | PV Technology and its applications | 2 | 2 | 0 | 2 | Λ. | 0 | 0 | | 4 | | | | | Pre-requisites: MEPS320 Introduction to power generation from solar energy - Fundamentals of solar or | | | | | | | | | | | | | References | matrices formation – Calibration operation without grid. 1. Photovoltaic Systems: Fund Eklas Hossain 2. Photovoltaic Water Pur | damenta | ls and | 1 Арр | lication | ns, Aut | thor(s): | Yama | an Abo | u Jieb | | | | Spec | Optimization, Author(s): Ta
3. Photovoltaic Systems Engir | mer Kha | tib, D | hiaa t | Halbot | Muhse | enof | 100 | on | | | | | MEPS419 | Oil Hydraulics and
Pneumatics | 2 | 2 | Ó | 2 | 0 | 0 | 0 | | 4 | | | | | Pre-requisites: MEPS224 | 6 | | 77 7 | | V | 100 | 50 | 555 | V. | | | | | Pumps, Motors, Valves and | Introduction to Hydraulics - Hydraulic Oils, Fluid Properties and Filter - Hydraul Pumps, Motors, Valves and Actuators - Air Preparation and Service Unit - Pneumat Cylinders, Motors and Valves - Circuit Design - Automation and Simulation | | | | | | | | | | | | References | Industrial Hydraulics by Joh | nn Pippe | nger a | and Ty | yler Hi | cks, M | cGraw | Hill. | | | | |