PART [C]: SPECIALIZED PROGRAMS (9) PETROCHEMICAL PROCESS SYSTEMS ENGINEERING Program (PPS) برنامج هندسة منظومات العمليات البتروكيماوية #### (9) Petrochemical Process Systems Engineering Program (PPS) برنامج هندسة منظومات العمليات البتروكيماوية #### رؤية البرنامج VISION To produce high caliber engineers with knowledge, expertise, and the strong foundation of social and professional ethics to benefit the society; support the industrial and then socio-economic development and Advanced Research in petrochemical engineering and related disciplines. تخريج مهندسين من ذوي الكفاعات العالية مزودين بالمعارف والخبرات وأساس متين من الأخلاق الاجتماعية و المهنية قادرين على خدمة المجتمع ودعم التنمية الصناعية و الاجتماعية و الاقتصادية ودفع عجلة البحث في مجال هندسة البتروكيماويات والتخصصات ذات الصلة #### رسالة البرنامج MISSION The program is committed to provide graduates with a distinguished scientific level in all disciplines of engineering related to petrochemicals, and who have the ability to meet the field challenges through distinguished scientific research with the use of the latest computational engineering Methods that include machine learning and data science application to serve society and the environment. يلتزم البرنامج بإمداد سوق العمل بخريجين ذوي مستوى علمي متميز في جميع تخصصات الهندسة المتعلقة بالبتروكيماويات، و لديهم القدرة على مواجهة تحديات المجال من خلال البحث العلمي المتميز مع الاستعانة بأحدث الأساليب الحسابية الهندسية التي تشمل التعلم الإلى و علوم البيانات وذلك بهدف خدمة المجتمع والبينة. # graduate attributes المنات النزيع gineering Protession - ه يخرج البرنامج مهندسيين ذوى خلفية قوية في تخصص البتروكيماويات، ذو معرفة متعمقة فى مجال الصناعات البتروكيماوية. - يتميز خريج البرنامج بقدرته على استخدام أحدث الأساليب العلمية في مجال الذكاء الإصطناعي والتعلم الألي لحل المشكلات الهندسية في تخصص الهندسة الكيميانية و هندسة البتروكيماويات. - خریج البرنامج قادر على المنافسة في سوق العمل المحلى و الاقليمي و الدولي و ذو قدرات عالية على الفهم و الإستيعاب و التعلم الذاتي و الابتكار والخلق والإبداع و لديه مهارات اتصال - يمثلك الخريج المهارات العملية و المهنية اللازمة للتوظيف في مجال البتروكيماويات والمجالات ذات الصلة و قادر على استكمال الدراسات العليا في مجال التخصص. - يتميز الخريج أيضا بالمهارات والأخلاق المهنية اللازمة للعمل ضمن فريق و التفاعل الصحيح في البينة المهنية. هذا بالإضافة إلى امتلاكه للمهارات الفكرية المطلوبة التخطيط وتصميم و تحليل و تنفيذ وإدارة المشاريع الصناعية البتروكيماوية. #### مرجعية البرنامج PROGRAM BENCHMARK - The program engineers have a strong background in petrochemical, with in-depth knowledge in petrochemical industries. - The graduate of the program is distinguished by his ability to use the latest scientific methods in the field of artificial intelligence and machine learning to solve engineering problems in the field of Chemical Engineering and Petrochemical Engineering. - The program graduate is able to compete in the local, regional and international market, has high abilities in understanding, assimilation, self-learning, innovation, creation and creativity. He also has communication skills. - The graduate students possess practical and professional skills required for employment in petrochemicals fields and related fields, besides being able to complete the postgraduate studies in their specialization field. - The graduate is also distinguished by his skills and professional ethics required to work within a team and interact correctly in a professional environment. This is in addition to possessing the intellectual skills required to plan, design, analyze, implement, and manage petrochemical industrial projects. - يتبنى البرنامج المعايير القومية الاكاديمية المرجعية (إصدار 2018) والمعدة من الهيئة القومية لضمان جودة التعليم والاعتماد وذلك للجدارات الخاصة بخريج كليات الهندسة على المستوى (A) ، وكذلك للجدارات الخاصة بخريج بر امج الهندسة الكيميانية على المستوى (B). - وكذلك يتبنى البرنامج بعض المعايير الأخرى الأكثر تخصصا على المستوى (C)، وذلك نظرا لطبيعة البرنامج. | | NARS 2018 | LEVEL A | LEVEL B | LEVEL C | LEVEL D | |------|-----------------|-----------------|-----------------|-----------|------------| | n | oninlizor | Totally Adopted | Totally Adopted | See Below | )ro-NApoir | | .eve | el C Sub-Specia | Ity Competencie | gi Liigiiid | GIIII I | 10162210 | #### The Petrochemical Process Systems Engineering (PPS) graduate must be able to: - C1. Construct and develop systems and processes in the Petrochemical industries according to its regulatory framework. - C2. Examine system components or/and direct modification of equipment/products to ensure conformance with engineering design, performance specifications, or environmental regulations. - C3. Demonstrate & evaluate several methods applied to break down Petrochemical industries, and develop everyday products like plastic, rubber, and synthetic fibres. - C4. Develop, design, evaluate, install, operate, or maintain equipment, systems, or processes in petrochemicals field to meet technical & economical requirements. - C5. Apply computing science and machine learning techniques necessary to analyze, design and optimize chemical and petrochemical engineering systems and processes. # توصيف المقررات SPECIALIZED COURSES CONTENTS | Code | Name | Credit Hours | Category | Pre-requisite | |---------|-----------------------|--------------|----------|----------------------------| | PPSS280 | Engineering Seminar | 1 | DR | 30 CR.HRS. +<br>AA APROVAL | | PPSS281 | Industrial Training-1 | 1 | FR | 60 CR.HRS. +<br>AA APROVAL | | PPSS381 | Industrial Training-2 | 2 | DR | PPSS281 +<br>AA APROVAL | | PPSS481 | Graduation Project-1 | 1 | FR | 110 CR.HRS. +<br>SOPHOMORE | | PPSS482 | Graduation Project-2 | 3 | DR | PPSS481 +<br>AA APROVAL | | Total | 3 | 2+6 | | | # توصيف المقررات COURSES CONTENTS | | | Cradit | Contact Hours | | | | | | | | | | | |-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|---------------|------------|-------------|---------|-----------|-------------|-------------|---------------|--|--|--| | Code | ode Name/Content | ode Name/Content Credit<br>Hours | Lec | Tut<br>(2) | App.<br>Tut | Lab | Stud | Off.<br>Tut | Off.<br>Hrs | Total | | | | | Faculty I | Requirements | | | | | | | | | 200 | | | | | PPSS280 | Engineering Seminar | 1 | 1 | | | - | | | | 1 | | | | | C. | Pre-requisites: 30 CR.HRS. + AA APROVAL | | | | | | | | | | | | | | Textbook | grade-system. CRC Fundamentals of Petroleur edition, 2020. Press; 1st | m and Petro | chemi | cal En | gineeri | ng (Che | emical Ir | ndustrie | es), | -00000-000000 | | | | | PPSS281 | Industrial Training-1 | 1 | 0 | 0 | | | | | | 1 | | | | | | Pre-requisites: 60 CR.HRS. + AA APROVAL | | | | | | | | | | | | | | | Training on industrial establishments relevant to the program. Training lasts for total of 90 hours, during a minimum period of three weeks. The program training advisor schedules at least one follow up visit to the training venue and formally report on performance of trainee(s). A Mentor in the industrial establishment provides a formal report on the student's performance during training. The | | | | | | | | | | | | | | | | Credit | | | ( | Conta | ct Ho | urs | | | | |---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|--------------------------|-------------------|-------------|-----------------------------------|------------------------------|-----------------------------|------------------------------|-----------------|--| | Code | Name/Content | Hours | Lec | Tut<br>(2) | App.<br>Tut | Lab | Stud | Off.<br>Tut | Off.<br>Hrs | Total | | | | student submits a formal report and<br>one member being an external exa<br>The course is graded as Pass/Fail | miner ap | pointed | | | | | | | | | | PPSS381 | Industrial Training-2 | 2 | 0 | 0 | | | | | | 0 | | | | Pre-requisites: PPSS281 + AA Approval | | | | | | | | | | | | | during a minimum period of six were visits to the training venue and form industrial establishment provides a student submits a formal report and one member being an external example course is graded as Pass/Fail | nally report<br>formal red<br>present<br>miner ap | port on part or ation to | erform<br>the s | tudent' | of traine<br>s perfor<br>d by a p | e(s). A<br>mance<br>panel of | Mentor<br>during<br>three r | in the<br>training<br>nember | . The<br>s with | | | PPSS481 | Graduation Project-1 | 1 | 0 | 0 | 2 | | | 7 | | 3 | | | | Pre-requisites: 110 credits + SOPHOMORE | | | | | | | | | | | | | Students – in groups (or individually in some programs) - undertake a final project as part of the program. In GP1, students provide a clear dentification of a real-life problem that represents an actual need for the industry or the community and reflects the mission and strategic objective of CUFE. Students are expected to survey the related literature, collect, and interpret market data, and proposed an approach for the solution, using the engineering knowledge and skills acquired. The course is graded as Pass/Fail based upon a report/oral presentation stating the expected cost and required material, tools, and facilities as well as a timed list of deliverables. | | | | | | | | | | | | PPSS482 | Graduation Project-2 | 3 | 1 | 2 | | 3 | | | | 6 | | | | Pre-requisites: PPSS481 + AA | Approval | | | | | | | | | | | St | Graduation Project-2 is the second solutions to problems encountered stated in Graduation Project-1. A ditechnical, economic, social, and enpresenting direct conclusions. | during the | e imple<br>n on th | ementa<br>e proje | ation pre- | ocess t<br>ubmitte | hus fulf<br>d taking | illing the | e delive<br>insidera | rables<br>ition | | ## متطلبات البرنامج PROGRAM REQUIREMENTS | Category | | No. of courses | Course<br>Credit Hour | Total Credit<br>Hours | |----------------------|---------------------|----------------|-----------------------|-----------------------| | 75 S 200 | | 15 | 3 | 45 | | Discipline | core/ | 9 | 2 | 18 | | Requirements<br>(DR) | compulsory | 11 | 1 | 1 | | (5.1.) | Elective | 0 | 0 | 0 | | Total DR courses | | 25 | | 64 | | Program | core/<br>compulsory | 9 | 3 | 27 | | Requirement (PR) | Floatius | 1 | 4 | 4 | | | Elective | 5 | 3 | 15 | | Total PR courses | | 15 | | 46 | | Total Elective cours | es (DR & PR) | 6 | 31 | 19 | ## Discipline Requirements (DR) core/compulsory courses list | Code | Name | Credit<br>Hours | Pre-requiste | |---------|-------------------------------------------------------|-----------------|--------------| | CHES101 | Organic Chemistry-1 | 2 | CHES001 | | CHES102 | Chemical Engineering Fundamentals | 3 | CHES001 | | CHES103 | Material Science for Petrochemical Engineers | = 2 | Dunfanaian | | PES201 | Introduction to Petroleum Industry | 3 | Profession | | CHES202 | Physical Chemistry-1 | 2 | CHES001 | | CHES201 | Fluid Mechanics | 3 | | | PES202 | General Geology | 3 | | | INTS201 | Electrical Engineering | 3 | PHYS002 | | MTHS104 | Differential Equations | 3 | MTHS003 | | CHES205 | Computer Applications in Petrochemical<br>Engineering | 2 | INTS005 | | CHES206 | Organic Chemistry-2 | 3 | CHES101 | | CHES204 | Thermodynamics and Combusticn | 3 | CHES202 | | CHES203 | Physical Chemistry-2 | 3 | CHES202 | | CHES301 | Unit Operations | 3 | CHES201 | | MDPS301 | Stress Analysis and Vessel Design | 2 | EMCS002 | | Code | Name | Credit<br>Hours | Pre-requiste | |---------|-------------------------------------|-----------------|--------------------------------| | CHES303 | Cryogenic Processes | 2 | CHES204 | | CHES304 | Heat Transfer and Applications | 3 | CHES201 | | CHES306 | Process Control | 3 | | | CHES405 | Mass Transfer | 3 | CHES201 + CHES203<br>+ CHES304 | | CHES403 | Process and Plant Design | 3 | | | CHES406 | Economics of Oil and Gas Production | 2 | GENS120 | | CHES407 | Separation Processes | 2 | CHES405 | | PPSS280 | Engineering Seminar | 1 | 30 CR.HRS. + AA<br>APROVAL | | PPSS381 | Industrial Training-2 | 2 | PPSS281 + AA<br>APROVAL | | PPSS482 | Graduation Project-2 | 3 | PPSS481 + AA<br>APROVAL | | Total | 25 | 64 | | # Program Requirements (PR) core/compulsory courses list | Code | Name | Credit<br>Hours | Pre-requiste | |---------|------------------------------------------------------------|-----------------|-----------------------------------| | PES301 | Reservoir Engineering | 3 | PES201 | | CHES302 | Introduction to Machine Learning | 3 | CHES205 +<br>MTHS204 | | CHES305 | Chemical Reactor Design Of Engine | ring | CHES204 +<br>CHES203 +<br>CHES102 | | CHES307 | Application of Machine Learning in Chemical<br>Engineering | 3 | CHES302 | | PES401 | Petroleum Production Engineering | 3 | PES301 | | CHES401 | Advanced Chemical Engineering Equipment<br>Design | 3 | CHES304 +<br>CHES301 | | CHES402 | Petrochemicals from Oil and Gas | 3 | CHES206 | | CHES404 | Petroleum Refining Engineering | 3 | CHES206 | | METS401 | Electrochemistry and Corrosion | 3 | | | Total | Including the elective courses | 46 | | #### Program Requirements (PR) elective courses list | Code | Name | Credit<br>Hours | Pre-requiste | |-----------|-----------------------------------------------------|-----------------|----------------------| | ELECTIVE- | · E2 <sup>(1)</sup> | | | | CHES210 | Data Science in Chemical Engineering | 4 | CHES105 +<br>MTHS204 | | CHES211 | Optimization in Chemical Engineering | 4 | CHES105 +<br>MTHS104 | | ELECTIVE- | E2 <sup>(2)</sup> | | | | CHES220 | Professional Ethics and Contracting | 3 | | | CHES221 | Entrepreneurship for Chemica Engineering | 3 | | | CHES222 | Circular Economy | 3 | GENS120 | | ELECTIVE- | - E4 <sup>(3)</sup> | | | | CHES310 | Environmental Laws and Ethics | 3 | GENS110 | | CHES311 | Environmental Pollution and Climate Change | 3.\ | GENS110 | | CHES312 | Safety and Risk Assessment | 3 | GENS110 | | CHES313 | Water Treatment for Oil & Gas Operations | 3 | | | ELECTIVE- | · E5 <sup>(4)</sup> | | | | CHES410 | Advanced Reactor Design | 3 | CHES305 | | CHES411 | Catalysis | 3 | CHES305 | | CHES412 | Polymer Science and Technology | 3 | CHES101 +<br>CHES204 | | CHES413 | Petroleum Standards | 3 | PES201 | | CHES414 | Industrial Measurements and Control Applications | 3 | CHES306 | | CHES415 | Advanced Separation Processes | 3 | CHES407 | | CHES416 | Advanced Statistics for Petrochemical<br>Industries | 3 | MTHS204 | | CHES417 | Advances in Petrochemical Ergineering | 3 | CHES301 | #### Remarks: - (1) Student selects one course from group E-2 equivalent to 4 credits - (2) Student selects one course from group E-3 equivalent to 3 credits - (3) Student selects at least two (2) courses from group E-4 equivalent to 6 credits - (4) Student selects at least two (2) courses from group E-5 equivalent to 6 credits #### Proposed Study Plan - 8 semesters - Including Freshman Level | | | | | Contact Hours | | | | | | | | | | |----------|---------|-------------------------------------------------------|--------|---------------|---------|---------|-----|------|---------|--------|-------|--|--| | s | Code | Name | Credit | Lec | Tut (2) | App Tut | Lab | Stud | Off Tut | OffiHr | Total | | | | | PHYS001 | Mechanical Properties of Matter and<br>Thermodynamics | 3 | 2 | | 2 | 1 | | | | 5 | | | | 2 | MTHS002 | Calculus I | 3 | 2 | 2 | | | | | | 4 | | | | E | EMCS001 | Engineering Mechanics - Dynam cs | 3 | 1 | 2 | | 1 | | | | 4 | | | | SEMESTER | CHES001 | Chemistry for Engineers | 2 | 1 | 2 | | | | | | 3 | | | | ¥ | INTS001 | Engineering Graphics | 3 | 2 | | | | 3 | | | 5 | | | | Ä | INTS005 | Information Technology | 2 | 1 | X | | 3 | | 400 | N | 4 | | | | ٧, | GENS004 | Proficiency and Capacity Building | 1 | 1 | | | | | V | | 1 | | | | | GENS001 | Critical and Creative Thinking | 2 | 2 | 21 | | | | | | 2 | | | | | | Sub-Total | 19 | 13 | 6 | 2 | 4 | 3 | 0 | 0 | 28 | | | | | | | Credit | Contact Hours | | | | | | | | | |----------|------------------|-------------------------------------------------|--------|---------------|---------|----------|-----|------|---------|----------|-------|--| | s | Code | Name | | Lec | Tut (2) | App. Tut | Lab | Stud | Off Tut | Off. Hrs | Total | | | | MTHS003 | Calculus 2 ranks of -noti | 130 | 2 | (2 | Pr | nf | 20 | eir | nn | 4 | | | | EMCS002 | Engineering Mechanics - Statics 5 | 120 | 1 | 2 | 100 | VI | UO | OIL | 711 | 3 | | | 2 | PHYS002 | Electricity and Magnetism | 3 | 2 | | 2 | 1 | 3 | S | ( | 5 | | | SEMESTER | E-A<br>(GENS005) | Elective E-A (Writing and Presentation Skills) | 2 | 2 | | | | | | | 2 | | | 监 | GENS002 | Societal Issues | 2 | 2 | | | | | | | 2 | | | | CHES101 | Organic Chemistry-1 | 2 | 1 | | | 3 | | | į. | 4 | | | S | CHES102 | Chemical Engineering Fundamentals | 3 | 2 | | 2 | | | | | 4 | | | | CHES103 | Material Science for Petrochemical<br>Engineers | 2 | 1 | | 3 | | | | | 4 | | | | | Sub-Total | 19 | 13 | 4 | 7 | 4 | 0 | 0 | 0 | 28 | | | | | | | Contact Hours Lec Lec Lab Stud #Tut #Tut | | | | | | | | | | |----------|---------|-------------------------------------------------------------------|----|------------------------------------------|---------|---------|-----|------|---------|-------|-------|--|--| | s | Code | Name | | Lec | Tut (2) | App Tut | Lab | Stud | Off Tut | OffHr | Total | | | | | MTHS102 | Linear Algebra and Multivariable Integrals | 3 | 2 | 2 | | | | | | 4 | | | | m | | Introduction to Petroleum Industry | 3 | 2 | | 1 | 2 | | | | 5 | | | | SEMESTER | | Elective E-A (Fundamental of<br>Management, Risk and Environment) | 2 | 2 | | | | | | | 2 | | | | ES | | Physical Chemistry 1 | 2 | 1 | | 3 | | | | | 4 | | | | Σ | CHES201 | Fluid Mechanics | 3 | 2 | 2 | | | | | | 4 | | | | S | PES202 | General Geology | 3 | 2 | 2 | | | | | | 4 | | | | | INTS201 | Electrical Engineering | 3 | 2 | 2 | | | | | | 4 | | | | | | Sub-Total | 19 | 13 | 8 | 4 | 2 | 0 | 0 | 0 | 27 | | | | | | | | | 倉 | Cor | tac | t Ho | ours | | | |------------|---------|--------------------------------------|--------|-----|---------|----------|-----|------|---------|----------|-------| | s | Code | Name | Credit | Гес | Tut (2) | App. Tut | Lab | Stud | Off Tut | Off. Hrs | Total | | | MTHS104 | Differential Equations | 3 | 2 | 2 | | | | | | 4 | | SEMESTER 4 | CHES205 | Committee Applications in Detections | 2 | 1 | | | 3 | | | | 4 | | E | CHES206 | Organic Chemistry-2 | 3 | 2 | | - 10 | 3 | | | | 5 | | 凹 | CHES204 | Thermodynamics and Combustion - | 3_ | 2 | | D. | 2 | _ | | | 4 | | ≥ | CHES203 | Physical Chemistry - 2 | 3 | 2 | Q | 2 | 1 | 52 | SII | | 5 | | S | MTHS204 | Advanced Probability and Statistics | 3 | 2 | 2 | | 9 . | - | | | 4 | | | E1 | University Elective | 2 | 2 | | | | | | | 2 | | | | Sub-Total | 19 | 13 | 4 | 2 | 9 | 0 | 0 | 0 | 28 | | | | | | | | Cor | itac | t Ho | urs | | | |----------|---------|-----------------------------------|--------|-----|---------|---------|------|------|---------|----------|-------| | s | Code | Name | Credit | Lec | Tut (2) | App Tut | Lab | Stud | Off Tut | Off. Hrs | Total | | | E3 | Elective-E1 | 3 | 2 | 2 | | | | | | 4 | | 35 | CHES301 | Unit Operations | 3 | 2 | | 3 | | | | | 5 | | Ē | PES301 | Reservoir Engineering | 3 | 2 | 2 | | | | ğ j | | 4 | | S | CHES302 | Introduction to Machine Learning | 3 | 2 | | 1 | 2 | | | | 5 | | SEMESTER | PPSS280 | Engineering Seminar | 1 | 1 | | | | | | | 1 | | 员 | MDPS301 | Stress Analysis and Vessel Design | 2 | 1 | | 3 | | | | | 4 | | | E2 | Elective E2 | 4 | 2 | 1 | | 2 | | | | 5 | | | | Sub-Total | 19 | 12 | 5 | 7 | 4 | 0 | 0 | 0 | 28 | | | | | | | ٨ | Cor | itac | t Ho | ours | | | |----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|-----------------|-----|---------|---------|------|------|---------|----------|-------| | s | Code | Name | Credit<br>Hours | Lec | Tut (2) | App/Tut | Lab | Stud | Off Tut | Off. Hrs | Total | | | CHES303 | Cryogenic Processes | 2 | 1 | | 3 | _ | | | 7 | 4 | | 9 8 | E-A<br>(GENS120) | Elective E-A (Fund. of Economics and Accounting) | 2 | 2 | | | | | | | 2 | | 岜 | And the second s | Heat Transfer and Applications | 3 | 2 | | 3 | | | | | 5 | | S | CHES305 | Chemical Reactor Design | 3 | 2 | 2 | - 10 | | | | | 4 | | SEMESTER | CHES307 | Application of Machine Learning in Chemical Engineering | 166 | 2 | 0 | Pr | 2 | es | sic | n | 5 | | 0, | CHES306 | Process Control | 3 | 2 | 2 | | ٠. | | | | 4 | | | E4 | Elective - E3 | 3 | 2 | 2 | | | | | | 4 | | | | Sub-Total | 19 | 13 | 6 | 7 | 2 | 0 | 0 | 0 | 28 | | | | | | | | Cor | itac | t Ho | ours | | | |----------|---------|---------------------------------------------------|--------|-----|---------|---------|------|------|---------|-------|-------| | s | Code | Name | Credit | Lec | Tut (2) | App Tut | Lab | Stud | Off Tut | OffHr | Total | | | PES401 | Petroleum Production Engineering | 3 | 2 | 2 | | | | | | 4 | | ER 7 | CHES401 | Advanced Chemical Engineering<br>Equipment Design | 3 | 2 | 2 | | | | | | 4 | | SEMESTER | CHES402 | Petrochemicals from Oil and Gas | 3 | 2 | | | 2 | | | | 4 | | ES | CHES404 | Petroleum Refining Engineering | 3 | 2 | | 1 | 2 | | | | 5 | | Σ | CHES405 | Mass Transfer | 3 | 2 | | 3 | | | | | 5 | | S | CHES403 | Process and Plant Design | 3 | 2 | 2 | | | | | | 4 | | | PPSS481 | Graduation Project - 1 | 1 | 0 0 | 2 | | | | | | 2 | | | | Sub-Total | 19 | 12 | 8 | 4 | 4 | 0 | 0 | 0 | 28 | | | | | 7 | | 倉 | Cor | itac | t Ho | ours | , | | |------------|---------|-------------------------------------|--------|-----|---------|----------|------|------|---------|----------|-------| | s | Code | Name | Credit | Гес | Tut (2) | App. Tut | Lab | Stud | Off Tut | Off. Hrs | Total | | 2028 | E4 | Elective - E4 | 3 | 2 | 2 | - 1 | | | 7 | | 4 | | SEMESTER 8 | E5 | Elective - E5 | 3 | 2 | 2 | | | | | | 4 | | Ē | E5 | Elective - E6 | 3 | 2 | 2 | | | | | | 4 | | S | | Electrochemistry and Corrosion | 3 | 2 | 2 | 100 | | | | | 4 | | 뿔 | CHES406 | Economics of Oil and Gas Production | 2 | 2 | - | n. | C | _ | . : . | | 2 | | E E | | Separation Processes | 2 | 1 | 0 | 3 | | 52 | SII | | 4 | | 0, | | | 3 | 1 | 2 | | 3 | | 7 | | 6 | | | | Sub-Total | 19 | 12 | 10 | 3 | 3 | 0 | 0 | 0 | 28 | # توصيف المقررات COURSES CONTENTS | | | | | | C | onta | ct Hou | ırs | | | |------------|----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|--------------------|------------------|---------------------|-------------------|----------------------|------------------|-------------|---------| | Code | Name/Content | Credit<br>Hours | Lec | Tut<br>(2) | App.<br>Tut | Lab | Stud | Off.<br>Tut | Off.<br>Hrs | Total | | Discipline | Requirement | | | | | | | | | >0 | | CHES101 | Organic Chemistry-1 | 2 | 1 | | | 3 | | | | 4 | | | Pre-requisites:(Chemistry for En | ngineers) | CHE | S001 | | | | 71 - 77 | | | | | Types of Organic compoun<br>hydrocarbons, halogen derivative<br>compounds, fatty acids and the<br>distillation of coal, Aromatic com | ves of pa<br>ir deriva | araffin:<br>tives, | s, alco<br>aldeh | ohols a | and po | lyalcoh | ols, or | gano-s | sulphur | | Textbook | David R Klein, Organic Chemist | ry, 3rd e | dition, | Wiley | y 2017 | A | | | | | | | Chemical Engineering<br>Fundamentals | 3 | 2 | | 2 | F 1 | | | | 4 | | | Pre-requisites: (Chemistry for E | ngineers | ) CHE | S001 | | | | | | | | CHES102 | Block flow diagrams, process to<br>batch versus continuous process<br>bypass structures, units and direction and non-reactive processes, en- | sses, the | input<br>s, prod | outputes v | ut stru<br>variable | cture c<br>es, ma | of the p<br>terial b | rocess<br>alance | , recyc | le and | | Textbook | Richard M. Felder, Ronald W. Chemical Processes, 4th Edition | | | | | | Eleme | | Princip | les of | | - Sh | Introduction to Petroleum Industry | UI L | 2 | HU | 1 | 8 | 101 | 000 | IUII | 5 | | PES201 | Pre-requisites: | | | | | | | | | | | F L 3201 | Overview of Oil and Gas Re<br>Petroleum, Introduction to Petr<br>Refining and the different Petrol | roleum ( | Geolog | y an | d Oil | Traps. | Introdu | uction | to Pet | roleum | | References | <ul> <li>Speight, J. G., An Introduction Wiley-Scrivener, 2011.</li> <li>Treese, S.A., Pujadó, P.R., Second. ed. Springer International</li> </ul> | Jones, | D.S.J. | , 201 | 5. Har | ndbook | | | | | | Code | 100 | Crodit | | | ( | onta | ct Ho | urs | | | |-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|--------------------------------------------|--------------------------------------------------------------|---------------------------------------------------|---------------------------------------------------------|-----------------------------------------------------------------------|---------------------------|----------------------------------------------------------|----------------------------| | Code | Name/Content | Credit<br>Hours | Lec | Tut<br>(2) | App.<br>Tut | Lab | Stud | Off.<br>Tut | Off.<br>Hrs | Tota | | CHES103 | Material Science for<br>Petrochemical Engineers | 2 | 1 | | 3 | | | | | 4 | | | Pre-requisites: | | | | | | | | | | | | Introduction on nature and pr<br>indices – Solids imperfections<br>Mechanical properties of comp | - Diffusi | on in | solids | - Med | | | | | | | Textbook | William D.Callister , Jr. & Da<br>Engineering, WILEY , 9th editt | | ethwis | ch, Fı | undam | entals | of Ma | terials | Science | ce and | | CHES202 | Physical Chemistry-1 | 2 | 1 | | 3 | 9 | | | | 4 | | | Pre-requisites: (Chemistry for | Engineers | ) CHE | S001 | | | - | | | | | 1 | and open systems- Thermo | cnemistry | <ul> <li>ther</li> </ul> | mody | namic | analy | sis of | | | | | | pumps, compressors, heat excompressors, and pumps. | changers | ,) | - iser | tropic | efficie | ncies c | syste | ems (tu | rbines | | References | pumps, compressors, heat excompressors, and pumps. Cengel Y., Fundamentals of Dahm K., Visco D., Fundam 2014. | Changers Thermal- nentals cf | ,)<br>fluid S<br>Chem | - iser<br>cienc<br>nical E | e, 5th. | efficie<br>Ed., 2<br>ering T | 016 ,<br>hermo | syste<br>of turb<br>dynan | ems (tu<br>pines, no<br>nics, 2n | ozzles | | | pumps, compressors, heat excompressors, and pumps. • Cengel Y., Fundamentals of • Dahm K., Visco D., Fundamentals | Changers Thermal- nentals cf | ,)<br>fluid S<br>Chem | - iser<br>cienc<br>nical E | e, 5th. | efficie<br>Ed., 2<br>ering T | 016 ,<br>hermo | syste<br>of turb<br>dynan | ems (tu<br>pines, no<br>nics, 2n | rbines<br>ozzles | | References<br>CHES201 | pumps, compressors, heat excompressors, and pumps. • Cengel Y., Fundamentals of • Dahm K., Visco D., Fundam 2014. • Kayansayan N., Thermodyn | Thermal-<br>nentals of<br>amics Prin | fluid S<br>Chem | cienc<br>ical E | e, 5th. | efficie<br>Ed., 2<br>ering T | 016 ,<br>hermo | syste<br>of turb<br>dynan | ems (tu<br>pines, no<br>nics, 2n | rbines<br>ozzles<br>d. Ed. | | | pumps, compressors, heat excompressors, and pumps. Cengel Y., Fundamentals of Dahm K., Visco D., Fundam 2014. Kayansayan N., Thermodyn Fluid Mechanics | Thermal-<br>nentals of<br>amics Prii<br>3<br>ation in a<br>ace, bas o | fluid S<br>Chem<br>nciples<br>2<br>fluid a | cience<br>ical E<br>s & Ap<br>2<br>nd pre<br>itions<br>equat | e, 5th.<br>ngine<br>pplicati<br>essure<br>of flui | efficie Ed., 2 ering T ons, 2 measi d kiner ind its | ncies of<br>016 ,<br>hermodind. Ed.<br>uring de<br>matics,<br>modific | dynan, 2013 | ems (tu<br>nics, no<br>nics, 2n<br>s, Static<br>nuity ec | d. Ed. | | | | | Ú. | | ( | onta | ct Ho | urs | | | |------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|-----------------------------------------|--------------------------------------|--------------------------------|---------------------------------------|---------------------------|---------------------------|-------------------------------|------------------------------| | Code | Name/Content | Credit<br>Hours | Lec | Tut<br>(2) | App.<br>Tut | Lab | Stud | Off.<br>Tut | Off.<br>Hrs | Total | | PES202 | General Geology | 3 | 2 | 2 | | | | | | 4 | | | Pre-requisites: | 20 50 | 300 0 | | Ď. | S2 X | | (A) (A) | Š. | 8 | | | Introduction - Environment of<br>classification of sedimentary<br>sediments - History of stratig<br>- Concepts of stratigraphy<br>Stratigraphic maps - Study of | rocks - We<br>raphy - Stra<br>studies - | atheri<br>atigrap<br>San | ng - R<br>hy no<br>nples | Residua<br>mencl<br>collec | al depo<br>ature - | sits an<br>Uncon | d soil<br>formi | s - Frag<br>ty - Cor | gmenta<br>relation | | Textbook | Tarbuck, E. J. and Lutgens, 2016. | F. K., Ea | rth An | Intro | ductio | n to P | hysical | Geo | logy, P | earson, | | INTS201 | Electrical Engineering | 3 | 2 | 2 | | | | | | 4 | | | Pre-requisites: (Electricity an | d Magnetis | m) PH | YS00 | 2 | | | | | | | Textbook | Induction Motors. Electrical and Electronic Pri Newness. | nciples and | d Tecl | nnolog | y, JO | HN BI | RD, Se | econd | editio | 2003 | | MTHS104 | Differential Equations | 3 | 2 | 2 | | | | | | 4 | | | Pre-requisites: (Calculus 2) N | ATHS003 | | | | | | | A | | | Sp | First-order differential equations; modeling with equations; method of undet higher order differential equapplications, shifting theore using Laplace transform; Four | first order<br>ermined co<br>uations; se<br>ms, convol | diffe<br>pefficient<br>ries s<br>lution | erentia<br>ents;<br>olution<br>theor | al equivariations; La<br>em; s | ations<br>on of p<br>place<br>olution | high<br>parame<br>transfo | er-ord<br>ters;<br>orm; p | ler difi<br>modeli<br>propert | erentia<br>ng with<br>es and | | References | "A First Course in Different<br>by Dennis G. Zill "Fundamentals of Different | itial Equatio | ons w | th Mo | deling | Applio | y R. N | agle , | Edwar | d Saff | | | | | | | C | onta | ct Hou | ırs | | | |------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|-------------------------------------|------------------------------------|----------------------------------------|------------------|----------------------------------|--------------------|----------------------------|----------------------------| | Code | Name/Content | Credit<br>Hours | Lec | Tut<br>(2) | App.<br>Tut | Lab | Stud | Off.<br>Tut | Off.<br>Hrs | Total | | CHES205 | Computer Applications in<br>Petrochemical Engineering | 2 | 1 | | | 3 | | | | 4 | | | Pre-requisites: (Information Tec | hnolog/ | INTS | 005 | Var S | (L) 15 | | | P.A. | Vice. | | | Introduction to programming upetrochemical engineering using | | | | | N. So | lving p | roblem | ns rela | ted to | | References | Computer Applications in Ch<br>.LAP LAMBERT Academic P Heys, J.J., Chemical and B | ublishing | g, 201 | 8 | | | | 15 | | 1 85 | | | 2017. | | | a . N.L. | | 1.0.4.41. | - d- 00 | 00 | | | | CHES206 | Josef Billo, Excel f Scientists Scientists | and Eng | gineer<br>2 | s: Nur | nerica | 3 | oas, 20 | 06 | | T = | | CHE5206 | Organic Chemistry-2 Pre-requisites: (Organic Chemis | | | 0.4 | | 3 | | - | | 5 | | References | <ul> <li>sulphonation, nitration and hale<br/>phenols, alcohols aldehydes and</li> <li>David R. Klein, Organic Che</li> <li>Charlotte W. Pratt, Kathleen</li> </ul> | d ketore<br>mistry, 3 | s, aro<br>3rd ed | matic<br>ition V | acids<br>Viley, 2 | and the<br>2017. | eir deriv | vatives | | 10014-000 | | CHES204 | Thermodynamics and Combustion | 3 | 2 | Idia D | locitor | 2 | our con | OII, VVI | loy 202 | 4 | | | Pre-requisites: (Physical Chemis | stry-1) C | HES2 | 02 | | | | | | - | | Sp | Chemical reaction equilibrium chemical reactions - thermodynequations governing thermodynand application of fugacity thermodynamic cycles (Carnolengines - gas turbines - introducer | namics of<br>namics (<br>and ad<br>t, Ranki | of idea<br>Maxw<br>ctivity<br>n, Di | el and<br>rell eq<br>coef<br>esel, | non-in<br>juation<br>ficients<br>Otto) | dealg<br>, equa | as mixt<br>ations o<br>principle | ures of state | funda<br>e) - prir<br>comb | menta<br>nciples<br>ustion | | References | Cengel Y., Fundamentals of Dahm K., Visco D., Funda Ed., 2014. Kayansayan N., Thermodyn | Therma<br>mentals | II-fluid<br>of C | Scien<br>hemic | nce, 5ti<br>al Eng | gineeri | ng The | 4.5<br>4 1931/1932 | | s, 2nd | | | | Crodit | 16 | | ( | Conta | ct Ho | urs | | /// | |----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|--------------------------------------------------------|----------------------------------------------------|--------------------------------------------------------|-------------------------------------------------------------|---------------------------------------------------------|-----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------| | Code | Name/Content | Credit<br>Hours | Lec | Tut<br>(2) | App.<br>Tut | Lab | Stud | Off.<br>Tut | Off.<br>Hrs | Total | | CHES203 | Physical Chemistry-2 | 3 | 2 | | 2 | 1 | | | | 5 | | | Pre-requisites: (Physical Chemi | stry-1) O | HES2 | 02 | | (a) (a) | | 20 2 | 50 | | | | Factors affecting the rate of chemical reactions kinetics (hal temperature on the reaction properties (specific gravity, significant determination of the rate and component systems, ideal bir (vapour pressure, viscosity, and | f – life of<br>constan<br>surface of<br>d order<br>nary liqui | of the retailed to the pension of so | reaction<br>raction, dis<br>ome do<br>oour o | on) - A<br>al det<br>stribution | termina<br>on coe<br>al rea | is relate<br>ation of<br>efficient<br>ctions | ion and<br>f differ<br>t,)<br>- pha | the effect that the determinant of | ffect on hysical actical | | Textbook | Atkins' PHYSICAL CHEMISTR<br>Edition. (2018). Oxford Universi | Y. By Pe | eter At | _ | Julio ( | de Pau | la and | James | Keele | r 11th | | CHES301 | Unit Operations | 3 | 2 | | 3 | A. | | | | 5 | | | Pre-requisites: (Fluid Mechanic | s) CHES | 201 | | | (2) | | | 1 | i e | | | Particulate solids properties, Solidization, Flow of fluid past cyclone design. McCabe J. and Smith W, "U | immerse | d bod | ies, C | )il – ga | as sep | aration | , Centr | ifugatio | on and | | Textbook | McGrawHill, 2005 | onit Opi | eration | is of | Chen | ilicai E | nginee | anng | - 5011 | eu | | MDPS301 | Stress Analysis and Vessel<br>Design | 2 | 1 | | 3 | | | | | 4 | | | Pre-requisites: (Engineering Me | chanics | <ul> <li>Stati</li> </ul> | cs) El | MCS0 | 02 | 1 | | | | | Sp | Axial thermal stresses, Internal moment diagrams, Bending stresses and Mohr Fundamentals of strength of ma Vessel Design: Design of Cylinder of Heads and Closures Pressure – Design of Tall Vessel | al reaction<br>esses in l<br>esses in l<br>esses circle<br>aterials, t<br>indrical a<br>esses circles | ons du<br>beams<br>e, Stre<br>ensior<br>and S<br>gn of | te to<br>s, Torsesses<br>n testi<br>pherio<br>Proc | bendi<br>sional<br>in cy<br>ng, ha<br>cal Ve<br>ess Ve | ng, sh<br>stresse<br>/lindrica<br>rdness<br>ssels<br>essels | earing<br>es and<br>al and<br>and im<br>under<br>and Pi | force<br>power<br>spher<br>spact te<br>interna<br>ipes ur | and bottransmical vests. | ending<br>ission<br>essels<br>sure - | | Textbook | Hibbeler, R. C., Mechanics of 2017. | | | | | | | | on, Pe | arson | | | | 0 | | | C | onta | ct Ho | urs | | | |------------|-----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|----------------------------|----------------------------|--------------------------|------------------|------------------|-------------------|--------------------|-----------| | Code | Name/Content | Credit<br>Hours | Lec | Tut<br>(2) | App.<br>Tut | Lab | Stud | Off.<br>Tut | Off.<br>Hrs | Total | | CHES303 | Cryogenic Processes | 2 | 1 | | 3 | | | | | 4 | | | Pre-requisites: (Thermodynami | cs and C | ombus | stion) | CHES | 204 | | 20 20 | 569 | (5) | | | Basic definitions related to cry<br>Carnot refrigeration cycles, Dis<br>and actual vapor compression<br>Systems, Practical applications | tinguish in cycles | etwe | en he | at pun | nps and | d refrig | eration | cycles | , Idea | | Textbook | Michael J. Moran, Howard N. S<br>ed., John Wiley & Sons, Inc., 20 | Shapiro, F | | menta | ls of E | nginee | ering Th | nermod | lynami | cs, 9th | | | Heat Transfer and Applications | | 2 | | 3 | | | | | 5 | | CHES304 | Pre-requisites: (Fluid Mechanic | s) CHES | 201 | | | | | | | | | CHE5304 | Modes of heat Transfer. The radiation. Design and checking | | | | | | | onvect | ion, Ti | nerma | | Textbook | Yunus Cengel, Heat Transfer. F | | | | | | | 2002. | | | | | Process Control | 3 | 2 | 2 | - | 5 ' | | | | 4 | | | Pre-requisites: | | | | / | | | | // // | | | CHES306 | Laplace Transform- Modeling<br>Response of simple systems<br>Modes-Block diagram algebra<br>loop control systems- Design a | to exte<br>and red<br>nd tuning | rnal d<br>uction<br>of co | isturb<br>meth<br>ntrol le | ances<br>hods-S<br>oops. | - Cont | trol Co<br>analy | nfigura<br>sis of | itions-(<br>linear | Contro | | Textbook | George Stephanopoulos, Che<br>Practice, Prentice-Hall, 1984. | emical P | roces | s Cor | ntrol: | An Int | roducti | on to | Theor | y and | | Sp | Mass Transfer Pre-requisites: (Fluid Mechanic Transfer and Applications) CHE | | 2<br>3201, | | 3<br>sical C | hemist | ry-2) C | HES2 | 03 and | 5<br>(Hea | | CHES405 | Introduction to mass transfer diffusion. Calculation of mass t two phases. Design single and | ransfer c | oeffici | ent fro | | | | | | | | References | <ul> <li>Treybal, R. E., Mass-transfe</li> <li>Geankoplis Ch., Transport F</li> <li>Coluson and Richerdson, Ch</li> </ul> | r operation<br>Process a<br>hemical E | ons, 3-<br>nd Un<br>ingine | Ed.,<br>it Ope<br>ering | eration<br>vol, vo | s,3∾E<br>olll,vo | d., Prei | ntice-H | all, 199 | 93. | | | | | | | C | onta | ct Ho | urs | | 7/5 | |------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|-----------------------------------------------|--------------------------------------|-------------------------------------------------|--------------------------------------------------|------------------------------------------------------|---------------------------------------|-------------------------------------------|------------------------------------------| | Code | Name/Content | Credit<br>Hours | Lec | Tut<br>(2) | App.<br>Tut | Lab | Stud | Off.<br>Tut | Off.<br>Hrs | Total | | CHES403 | Process and Plant Design | 3 | 2 | 2 | | | | | | 4 | | | Pre-requisites: | C | 30. 3 | 3 | | 20 | | 27 2 | 550 | 10 | | | Different types of flow sheets,<br>different layout methods, Proje<br>Species allocation, Reaction pa | ect time | mana | geme | ent and | d Gan | tt chart | t. Mate | erial ba | alance, | | Textbook | Richard Turton, Richard C. B. Synthesis, and Design of Cher 2016. | | | | | | | | | | | | Separation Processes | 2 | 1 | 3 | | | | | | 4 | | 1 | Pre-requisites: (Mass Transfer) | CHES40 | )5 | | | | | | | | | CHES407 | Absorption and stripping. Dis-<br>component distillation. Different<br>binary distillation column. Opera<br>in distillation. Design of internal<br>applications in petroleum indu-<br>Humidification and dehumidification problems. | t method<br>ating cor<br>is of pla<br>istry, de<br>cation of | ds for<br>ditionate and<br>sign a<br>peration | calcus affecting pack<br>and cons. C | lation<br>cting a<br>ked co<br>calcula<br>Compu | number<br>nd sep<br>lumns.<br>tion of<br>ter sin | er of st<br>paration<br>Solver<br>liquid<br>nulation | ages in of different extraction to so | n multi<br>icult m<br>action a<br>ction b | i-stage<br>ixtures<br>and its<br>attery. | | References | <ul> <li>Treybal, R. E., Mass-transfe</li> <li>Geankoplis Ch., Transport F</li> <li>Coluson and Richerdson, C</li> <li>McCabe and Smith, Unit op</li> <li>Sherwood, Mass Transfer,</li> <li>Perry's, Chemical Engineer</li> <li>Mass Transfer: Theory and</li> </ul> | Process hemical erations | and U<br>Engin<br>for Ch | nit Op<br>eering<br>nemica | eration<br>y vol, v<br>al Engi | ns, 3- E<br>ol II, vo<br>neerin | Ed., Pre<br>ol III.<br>g,<br>Prnf | entice-l | ion | 993. | | Code | 100 | onta | ct Ho | urs | Contact Hours | | | | | | | | |--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------|------------------------------------------------------|---------------------------------------------------------------------|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-----------------|-------------------|--|--| | Code | Name/Content | Credit<br>Hours | Lec | Tut<br>(2) | App.<br>Tut | Lab | Stud | Off.<br>Tut | Off.<br>Hrs | Total | | | | Program I | Requirement | | | 2 2720 | | | 22 | | | 200 | | | | Program Co | ourses (Compulsory) | | | | | | | | | 0.1 | | | | PES301 | Reservoir Engineering | 3 | 2 | 2 | | | | | | 4 | | | | | Pre-requisites: (Introduction to | Petroleu | m Ind | ustry) | PES2 | 01 | | | | | | | | | Reservoir classification & ene and gas reserves - Under drive. Water flooding and gas | saturate | d res | | | - | The state of s | | | | | | | Textbook | Ahmed, T., Reservoir Enginee | ring Hand | dbook | Four | th Edit | ion, El | sevier, | 2010. | | | | | | CHES302 | Introduction to Machine<br>Learning | 3 | 2 | | 1 | 2 | | | | 5 | | | | | Pre-requisites: (Computer Ap<br>(Advanced Probability and Sta | | | | chemic | al En | gineeri | ng) Cł | HES10 | 5 and | | | | | | | 72 72 | | 33 | 211 5 | 715 715 | | | /MCS01 | | | | | Introduction to expert systems abduction - expert system to application fields that need systems - intelligent agents - s | ouilding -<br>intelliger | - know | wledg | e eng | ineerir | ig - M | achine | Lean | ning - | | | | References | abduction - expert system tapplication fields that need | ouilding intelliger<br>semantic<br>achine<br>earning | - knownce (I<br>web,<br>earning<br>by Sir | wledg<br>earning<br>by the mon R | e eng<br>ng-plar<br>Christo<br>togers, | ineerin<br>nning-r<br>opher E<br>Mark | obotics<br>Bishop,<br>Girolan | 2006.<br>ni, 201 | Learn<br>sion s | ning - | | | | | abduction - expert system to application fields that need systems - intelligent agents - s Pattern-Recognition-and-M A First Course in Machine I Deep Learning, Ian Goodfe | ouilding intelliger<br>semantic<br>achine<br>earning | - knownce (I<br>web,<br>earning<br>by Sir | wledg<br>earning<br>by the mon R | e eng<br>ng-plar<br>Christo<br>togers, | ineerin<br>nning-r<br>opher E<br>Mark | obotics<br>Bishop,<br>Girolan | 2006.<br>ni, 201 | Learn<br>sion s | ning - | | | | References CHES305 | abduction - expert system to application fields that need systems - intelligent agents - s • Pattern-Recognition-and-M • A First Course in Machine I • Deep Learning, Ian Goodfe Chemical Reactor Design Pre-requisites: (Thermodynam) | intelliger<br>semantic<br>achine<br>earning<br>llow and<br>3<br>ics and 0 | - knownce (I<br>web.<br>earnin<br>by Sir<br>Yoshu<br>2 | wledg<br>earning<br>by one R<br>ua Be<br>2<br>ustion | e eng<br>ng-plar<br>Christo<br>Rogers,<br>ngio ar | pher E<br>Mark<br>nd Aar | obotics Bishop, Girolan on Cou | 2006.<br>ni, 201 | Learnsion s | ning –<br>support | | | | | abduction - expert system to application fields that need systems - intelligent agents - s • Pattern-Recognition-and-M • A First Course in Machine I • Deep Learning, Ian Goodfe Chemical Reactor Design | intelliger semantic achine earning llow and ics and ( neering F d analysis non-adia | earning by Sir Yoshu 2 Combu-undars of Rabatic r | wledgearning by mon Rua Be 2 ustion menta | Christo<br>Cogers,<br>ngio ar<br>CHE<br>als) CHE<br>ata – Mors) hor | pher E Mark nd Aar S204 a | Bishop,<br>Girolan<br>on Cou<br>and (Ph | 2006.<br>ni, 201<br>rville, 2 | 7.<br>2015. | ning –<br>suppor | | | | | | Credit<br>Hours | Contact Hours | | | | | | | | | | |------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|---------------------------|-------------------------|-----------------------------|--------------------------------|-------------------------------|---------------------------------|--------------------------|-------------|--|--| | Code | Name/Content | | Lec | Tut<br>(2) | App.<br>Tut | Lab | Stud | Off.<br>Tut | Off.<br>Hrs | Tota | | | | CHES307 | Application of Machine<br>Learning in Chemical<br>Engineering | 3 | 2 | | 1 | 2 | | | | 5 | | | | | Pre-requisites: (Introduction to | Machine | Learn | ing) ( | CHES | 302 | | | | | | | | | Applying machine learning tool example applications. Integration methods to reach higher accurregression analysis, process contimization, drug discovery, fadate applications. | ng machi<br>acy and i<br>ontrol, the | ne lea<br>nterpr<br>ermod | rning<br>etabil<br>ynam | metho<br>ity. Ap<br>ic para | ods wit<br>plication<br>ameter | h conve<br>ons may<br>s estim | entiona<br>y includ<br>ation, r | l mode<br>le:<br>eal-tin | eling<br>ne | | | | References | <ul> <li>Thomas E. Quantrille, Y. A. Liu Aceves-Fernandez, M. A., (Ed. Artificial Intelligence - Emerging Chemical Engineering, Intech (2020).</li> <li>Machine Learning in Chemistry Chemistry, http://dx.doi.org/10.</li> </ul> | i.). (2018)<br>g Trends<br>Open. htp<br>y: The Im | and Aps://doi. | oplications/10 | ions, C<br>0.5772/ | hapter<br>intecho | 20 - App<br>pen.718 | olication<br>305 Car | of Al i | n<br>, H., | | | | PES401 | Petroleum Production Engineering Pre-requisites: (Reservoir Engi | 3 | 2 | 2 | | | | | | 4 | | | | Sp<br>References | Reservoir performance - Range Performance Relationships - National Reservoir Performance - Range Relationships - National Re | adial flo<br>laturally f<br>ice.<br>Petroleum | w ard<br>lowing | wells | s - Ver<br>Engine | tical lif | t perfor | mance | - Mult | iphase | | | | CHES401 | Advanced Chemical<br>Engineering Equipment<br>Design | 3 | 2 | 2 | | | | | | 4 | | | | | Pre-requisites: (Heat Transfe<br>CHES301<br>Design of industrial filters – D<br>tanks – Flow of non-Newtonian | esign cf | solid - | - gas | sepa | rators | – Desig | gn of s | edime | ntation | | | | Textbook | of tube still heaters – Design of McCabe J. and Smith W, "McGrawHill, 2005. | f Boilers | and Co | onder | nsers - | -Desig | n of mix | kers. | esergence. Co | | | | | | | Credit | Contact Hours | | | | | | | | | | | |------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|--------------------------------------------------|--------------------------------|-----------------------------|------------------------------|--------------------------------|----------------------------------|---------------------------|------------------------------|--|--|--| | Code | Name/Content | Hours | Lec | Tut<br>(2) | App.<br>Tut | Lab | Stud | Off.<br>Tut | Off.<br>Hrs | Tota | | | | | CHES402 | Petrochemicals from Oil and Gas | 3 | 2 | | | 2 | | | | 4 | | | | | | Pre-requisites: (Organic Chemistry-2) CHES206 | | | | | | | | | | | | | | | Unit Operations in synthesis, Natural and synthetic fibers, fermentation, Saccharide ar Carbohydrates, dyes, Synthesis of some important compounds: olefins, phenyl chlorid fertilizers, and Thermoplastics. | | | | | | | | | | | | | | References | <ul> <li>P. H. GROGGINS, Unit Proc<br/>KOGAKUSHA, LTD., 5th Ed., 2</li> <li>Sami Matar, Chemistry of Petro</li> </ul> | 2008 | - 350 | | | 5 000000 | | | | /. HILL | | | | | CHES404 | Petroleum Refining<br>Engineering | 3 | 2 | | 1 | 2 | | | | 5 | | | | | | Pre-requisites: (Organic Chemi | stry-2) C | HES2 | 06 | | | | | | | | | | | References | & uses, Wax distillates product Lubrication, Manufacture of grades and crude oil, dehydration • Kaiser, M.J., Klerk, A. de, Gargeone Economics, and Markets, Sixth • Treese, S.A., Pujadó, P.R., Joed, Springer International Publication | ease, Co<br>, desulph<br>y, J.H., H<br>. ed. CRO<br>nes, D.S. | omplex<br>nurizat<br>landwe<br>D Press<br>J., 20 | refinion, Cork, G. | ery so<br>rackin<br>E., 201 | chemes<br>g & re<br>19. Petr | for proforming | Opera<br>Opera<br>Refining | ng of Nations. | Natura<br>nology, | | | | | METS401 | Electrochemistry and<br>Corrosion | 3 | 2 | 2 | 7111 | 6 | 101 | 000 | 011 | 4 | | | | | | Pre-requisites: | | | | di v | | - | | Vii | - | | | | | | Electrochemical cells – Cel<br>Measurement of cell potential<br>Ionic conduction – Transfer nu<br>– Design and economics of el<br>cells – Aluminum cells – electro<br>– Types – Measurements – Co | <ul> <li>Solub</li> <li>mber – I</li> <li>ectroche</li> <li>oplating</li> </ul> | oility po<br>Kinetic<br>emical<br>– batte | roducts of e<br>cells<br>eries | t – phelectro<br>– Indu | l value<br>chemic<br>ustrial | e – Equ<br>cal read<br>applica | uilibriun<br>tions –<br>tions (( | n cons<br>Polar<br>Causti | stant -<br>ization<br>c soda | | | | | References | Electrochemistry, second ed Industrial Electrochemistry, s Jackowska, Krystyna and Kr | ition, Ph | ilip H.<br>dition, | Riege<br>Dere | k Plet | cher ar | nd Fran | | | | | | | | | 2000 1 1 2000 10 12 | Crodit | Contact Hours | | | | | | | | | | | |--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|------------|-------------|----------------|----------|-------------|-------------|----------|--|--|--| | Code | Name/Content | Credit<br>Hours | Lec | Tut<br>(2) | App.<br>Tut | Lab | Stud | Off.<br>Tut | Off.<br>Hrs | Tota | | | | | CHES406 | Economics of Oil and Gas<br>Production | 2 | 2 | | | | | | | 2 | | | | | | Pre-requisites: (Fundamentals of Economics and Accounting) GENS120 | | | | | | | | | | | | | | | Techno Economic feasibility<br>Preparation of tender docume<br>evaluation of offers. | - | | | | | | | | _ | | | | | References | Marshall, D., McManus, W., Edition, McGraw-Hill/Irwin Egyptian Petroleum ministry | | Accessor-too | | ountin | g: Wha | at the N | umber | s Mear | 1. 12th | | | | | Program ( | Courses (Electives) | | | | | | | | | | | | | | Elective Gro | | | | | | | | | | | | | | | CHES210 | Data Science in Chemical<br>Engineering | 4 | 2 | 1 | | ^2 | | | | 5 | | | | | | Pre-requisites: (Computer Ap<br>(Advanced Probability and Stat | 250 TO CONTROL OF THE PARTY | | | chemic | al En | gineerir | ng) Ch | ES10 | 5 and | | | | | | Introduction to Data Science – Data Wrangling – Data Reduction – Data Analysis – Data Visualization – Statistical Testing Basics and Sample Comparison Tests – Application and case studies in Chemical Engineering. Labs and tutorials will be taught in PYTHON. | | | | | | | | | | | | | | References | George, N., 2021. Practical Data examples to extract insights from Beck, D.A.C., Carothers, J.M., Accelerating innovation and disc. | data.<br>Subra n | anian, | V.R. | and P | faendtn | er, J. ( | 2016), | Data s | | | | | | CHES211 | Optimization in Chemical Engineering | 04 E | 2 | 1e | Frir | g <sub>2</sub> | rot | ess | ion | 5 | | | | | | Pre-requisites: (Computer A (Differential Equations) MTHS1 | | ns in | Pe | troche | mical | Engine | ering) | CHE | S105 | | | | | | Basic concepts of optimization,<br>multivariable optimization, linea<br>optimization. | | | _ | | | | | | | | | | | References | Beers, Kenneth J. Numerical<br>Cambridge University Press, 200 Engineering Optimization: Metho<br>2nd Edition, Wiley India, 2006 I<br>Computing. Cambridge University | 6.<br>ds and A<br>Press, W. | pplicati<br>H. Nu | ons - / | A. Ravi | ndran, l | K. M. Ra | gsdell, ( | G. V. R | eklaitis | | | | • Engineering Optimization: Theory and Practice - S. S. Rao, 4thEdition, John Wiley & Sons, Inc, 2009 | | 927 | Credit | Contact Hours | | | | | | | | | | |--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|------------------------------------|----------------------------------------|--------------------------------------|----------------------------------------|--------------------------------|-------------------------------|--------------------|---------------------------|--|--| | Code | Name/Content | Hours | Lec | Tut<br>(2) | App.<br>Tut | Lab | Stud | Off.<br>Tut | Off.<br>Hrs | Total | | | | Elective Gro | | | | | | | | \ <u>\</u> | | | | | | CHES220 | Professional Ethics and<br>Contracting | 3 | 2 | 2 | | | | | | 4 | | | | | Pre-requisites: | | | | | | | | | | | | | | Morals and ethics - The impo<br>codes of ethics - Professional r<br>decision making - Ethical lead<br>Engineers in organizations - E<br>Planning and making contract<br>Payement - Risk and delivery - | esponsitership in<br>Ethics in<br>ts - Neg | oilities<br>engir<br>the w | of end<br>neering<br>orkpland<br>g ski | gineers<br>g and<br>ace -<br>lls - S | s - Bas<br>societ<br>Fairne<br>tructur | ics of e<br>ty - Co<br>ss (per | ethical a<br>nflicts<br>sonal | analyse<br>of inte | es and<br>rests<br>ocial) | | | | References | ICHEME, 2013. The Red Bot ICHEME, 2021. Code of Prot ICHEME, 2021. Disciplinary | fessional | Cond | | ract, 5 | th Editi | on. | | | | | | | CHES221 | Entrepreneurship for Chemical<br>Engineering | 3 | 2 | 2 | | | 1 | | | 4 | | | | | Pre-requisites: | | | 5 | | | - | - 1 | | | | | | | Business model canvas, value<br>product, competition analysis, o<br>shareholder agreement, financi<br>funding lifecycle, lean methodo | customer<br>al mana | segm | entat | ion, pr | icing a | nd cost | manag | gemen | 1.7 | | | | References | <ul> <li>Entrepreneurship, successfu</li> <li>Oklahoma State University, F</li> <li>Disciplined Entrepreneurship</li> <li>Wiley &amp; Sons Inc; Illustrated,</li> <li>Beyond Entrepreuneurship 2</li> <li>2020/12/0, JIM COLLINS, BI</li> </ul> | R. Duame<br>- 24 Sto<br>30/08/2<br>.0, Publi | lrelar<br>eps to<br>013.<br>shed b | nd Tex<br>a Sud | cessfi | & M Ur<br>ul Start | niversity<br>tup, put | /.<br>olished | by Jol | | | | | CHES222 | Circular Economy | 3 | 2 | 2 | | | | | | 4 | | | | | Pre-requisites: (Fundamentals | of Econo | mics a | and A | ccoun | ting) G | ENS12 | 0 | • | | | | | | Introduction to the Circular<br>Management- Life Cycle Asses | | | | ar Sy | stems | Engir | neering | - Tra | nsition | | | | Textbook | Circular Economy: From Waste<br>Delchet-Cochet, 2020. | | | | Creat | ion, Vo | olume 3 | , by Ka | ren | | | | | | 2000 T 1 2000 TO 1 2000 | Credit | 1 | | C | onta | ct Hou | urs | w | | | | |--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|--------------------------------------------|------------------------------------------------------------|-----------------------------------------------------|------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------|---------------------------------------------------|--|--| | Code | Name/Content | Hours | Lec | Tut<br>(2) | App.<br>Tut | Lab | Stud | Off.<br>Tut | Off.<br>Hrs | Tota | | | | Elective Gro | oup E-4 | 2 | | | | b 5 | | | | 576 | | | | CHES310 | Environmental Laws and<br>Ethics | 3 | 2 | 2 | | | | | 9 | 4 | | | | | Pre-requisites: (Fundamental of Management, Risk and Environment) GENS110 | | | | | | | | | | | | | | Structural framework of Egypt administered - Political and environmental laws - Environmental effects of evalue and right action (anthroputing environmental ethics simply, ecoterroism) - Ethics of | economic<br>mental la<br>xisting ar<br>opocentr<br>into prac | reali<br>ws ar<br>nviron<br>ism, a | ties in<br>nd reg<br>menta<br>animal<br>(reduc | nvolve<br>julation<br>il laws<br>l welfa<br>ce, rei | d in c<br>ns - E<br>- Envi<br>are, bi<br>use, re | reating<br>conomi<br>ronmer<br>ocentris<br>acycle, | and a<br>c, polit<br>ntal phi<br>sm, ed<br>food | adminis<br>ical, s<br>losoph<br>cocentr | stering<br>ocieta<br>nies or<br>rism) | | | | References | Egyptian Ministry of Environ Amended by Law 9/2009 and Environmental Protection Ag | d Law 10 | 5/201 | | | | | | | nmen | | | | CHES311 | Environmental Pollution and<br>Climate Change | 3 | 2 | 2 | | | 1 | | | 4 | | | | | Pre-requisites: (Fundamental o | f Manage | ement | , Risk | and E | nviron | ment) ( | GENS1 | 10 | 2.70 | | | | Spo | Types of pollution – Transport Industrial waste treatment – I reduction – Pre-treatment pro Design of biological treatment integration of Definition of climate change an effects - Adaptation to climate of the property t | Pollutants<br>cesses -<br>- Air poll<br>air<br>ad its cau<br>change a | s prop<br>Desi<br>lution<br>ses -<br>nd wa | perties<br>ign of<br>and modulate<br>Predictions<br>ays to | prima<br>prima<br>nathen<br>ints<br>ction o | ivironm<br>iry trea<br>natical<br>f clima<br>with en | nental a<br>atment<br>models<br>contro<br>ite char<br>ergy pr | auditing<br>and pr<br>s – For<br>l<br>nge and<br>oblems | g – Porecipita<br>mulation<br>me<br>d its possi | ollutior<br>ators -<br>on and<br>thods<br>ossible | | | | References | <ul> <li>Spellman, F. R., The science<br/>2021.</li> <li>Metcalf &amp; Eddy, Inc., Geor<br/>Franklin Burton, Wastewate</li> </ul> | rge Tcho | bano | glous, | н. s | tensel, | Ryujir | o Tsu | chihasi | hi and | | | | | 2021 11 22 11 12 | Credit | | Contact Hours | | | | | | | | | | | |--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|--------------------------------------|----------------------------------------|-----------------------------------------|-------------------------------------------|--------------------------------------------|--------------------------------------------|-------------------------------------------|---------------------------------------|--|--|--|--| | Code | Name/Content | Hours | Lec | Tut<br>(2) | App.<br>Tut | Lab | Stud | Off.<br>Tut | Off.<br>Hrs | Tota | | | | | | CHES312 | Safety and Risk Assessment | 3 | 2 | 2 | | | | | | 4 | | | | | | | Pre-requisites: (Fundamental of Management, Risk and Environment) GENS110 | | | | | | | | | | | | | | | | Process Safety Fundamentals - Risk management process - Hazard Identification - Qualitative and Quantitative Risk Assessment - Risk Matrix - Tools for Risk Assessment: Probability and Consequences: Event Tree, Fault Tree, FMECA, FEMEA, MOSAR - HACCP: principles and applications — HAZOP - Hazard Scenarios, Consequence Analysis and Modelling, Types of Fires and Explosions, Likelihood Analysis. Process Safety in Engineering and Operations Introduction to Safety - Importance of Process Safety in Operations - Process Safety Performance - Inherently Safer Design, Protective Systems - Plant Layout - case study - Sweeks industrial seminar | | | | | | | | | | | | | | | References | S. K. Biswas, U. Mathur, S. K. Press. Roger L. Brauer, 2016, Safety an | | | | | | | ety Eng | ineering | , CRO | | | | | | CHES313 | Water Treatment for Oil & Gas<br>Operations | 3 | 2 | 2 | | | | | | 4 | | | | | | | Pre-requisites: | | | | / | | 1 | | | | | | | | | Co | Water chemistry fundamentals - v source of corrosion - corrosion co sources of treatable waters in the water discharge/disposal and treatuses for produced waters - legal Study. • Bahadori, A., Essentials of Oil and treatuses for produced waters - legal Study. | e oil and<br>tment pri<br>issues a | ater tr<br>gas<br>nciples<br>nd reg | eatme<br>industr<br>s- prod<br>ulation | nt micr<br>y (ups<br>luced v<br>is - Ec | obiolog<br>tream a<br>vater tro<br>onomic | y - effe<br>and dov<br>eating e<br>s of Wa | cts of w<br>vnstream<br>quipme<br>ater Tre | vater sa<br>m) -Pro<br>ent - be<br>atment | alinity<br>oduced<br>neficia<br>-Case | | | | | | References | Professional Publishing, 2016. Patton, C. C., Applied Water Tech | hnology, 2 | 2 <sup>nd</sup> edit | ion, Ca | ampbell | Petrole | um, 199 | 35. | lon | | | | | | | <b>Elective Gr</b> | | | | | | | | | | | | | | | | | | 2 | | | | | | | | | | | | | | CHES410 | Advanced Reactor Design | 3 | 2 | 2 | | | | | | 4 | | | | | | | Advanced Reactor Design<br>(Chemical Reactor Design) CH | | 2 | 2 | | | | | | 4 | | | | | | | | ES305<br>ors - Va<br>ions - Re<br>nt of kine<br>optimiz | arious<br>eactor<br>etic da<br>ation | types<br>Designata, Choof rea | n, Car<br>noice of<br>action | talytic i<br>of type<br>system | reactors<br>of reac<br>proce | s proce<br>ctors -<br>ss des | ss syn<br>Treatm<br>ign - 0 | - Un<br>ithesi<br>nent c | | | | | Textbook #### BYLAWS 2023 Bachelor of Science Degree Credit Hours System | | | Credit | Contact Hours | | | | | | | | | | | | |------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|------------------|------------|-------------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------|-----------------------------------------|--|--|--|--| | Code | Name/Content | Hours | Lec | Tut<br>(2) | App.<br>Tut | Lab | nodynamics and Corrections of Polymers and Blends. Institute | Off.<br>Hrs | Tota | | | | | | | CHES411 | Catalysis | 3 | 2 | 2 | | | | | | 4 | | | | | | | (Chemical Reactor Design) CHES305 | | | | | | | | | | | | | | | | Definition of a catalyst- Different types of catalysts- Different stages and steps of catalytic reactions. Energy aspect of a catalytic conversion- Preparation of the catalysts- Shaping, thermatreatments- Problems associated with the use of catalysts and their impact on implementation. | | | | | | | | | | | | | | | Textbook | Ross, J. R. H., Heterogeneous | Catalysi | s. Fur | ndame | ntals a | and Ap | plicatio | ns, Els | evier, | 2012. | | | | | | CHES412 | Polymer Science and<br>Technology | 3 | 2 | 2 | | | | | | 4 | | | | | | | Prerequisites: (Organic Chemis CHES204 | stry-1) Cl | HES1 | 01 and | d (The | rmody | namics | and Co | ombus | tion) | | | | | | | Introduction on polymers -<br>classifications- Polymerization<br>and crystallization - Thermodyr | mechani | isms- | Polyn | ner mo | lecula | weigh | t- Poly | | | | | | | | Textbook | Fakirov, S., Fundamentals of P | olymerS | cienc | e for E | Engine | ers, W | iley-VC | H. 201 | 7. | | | | | | | CHES413 | Petroleum Standards | 3 | 2 | 2 | | | | | | 4 | | | | | | | Prerequisites: (Introduction to F | etroleur | n Indu | istry) I | PES20 | 1 | 1 | - 1 | | | | | | | | | Standards of crudes and refine<br>Fundamentals of computer pro-<br>Product specifications (key re-<br>refinery units - Case studies. | cess sin | nulatio | n - O | il refin | ery flo | w sche | | | | | | | | | References | <ul> <li>Kaiser, M.J., Klerk, A. de, Gar<br/>Economics, and Markets, Sixth,</li> <li>Treese, S.A., Pujadó, P.R., Jone<br/>Springer International Publishing</li> </ul> | ed. CRC F<br>es, D.S.J. | ress.<br>2015 | nei | erir | OF 1 | rnt | 229 | lon | 100000000000000000000000000000000000000 | | | | | | CHES414 | Industrial Measurements and<br>Control Applications | 3 | 2 | 2 | | | | | | 4 | | | | | | | Prerequisites: (Process Contro | ) CHES | 306 | | | | | | | | | | | | | | Dynamics of first order system control elements - Single varia Control systems with multiple output processes- Interaction a selection of loops - PLC- Instru | ble cont<br>loops-<br>and deco | rol loc<br>Adapt | ops- F | eedba | ck sys | tems w | ith larg | ge dea | dtime<br>nultiple | | | | | Jean-Pierre Corriou, Process Control, Theory and Applications, Second Edition, Springer 2017. | | 270. I MR. VA | Crodin | | | C | onta | ct Hou | urs | | 00 | | | |------------|------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|------------------|-----------------|--------------------|----------------------|------------------|-----------------------------------------------------------------------------------------------------------------|------|-------|--|--| | Code | Name/Content | Credit<br>Hours | Lec | Tut<br>(2) | App.<br>Tut | Lab | Stud | d Off. Off. Tut Hrs Dents— ion exceptions of membrane separations. Practical process Principles. Random varia | Tota | | | | | CHES415 | Advanced Separation 3 2 2 4 | | | | | | | | | | | | | | Prerequisites: (Separation Processes) CHES407 | | | | | | | | | | | | | | Basics of adsorption, equilibre separation – Chromatograph types, modules and theory techniques, Ultrafiltration – Mi | ic separa<br>and mas | tion –<br>s tra | Princ<br>nsfer | iples<br>throug | and ap | oplication | ons of | memb | ranes | | | | References | <ul> <li>G. Towler and R. Sinnott<br/>Economics of Plant and Pro</li> <li>J. D. Seader, Ernest J. He<br/>Applications Using Process</li> </ul> | ocess Des | ign", 2<br>Keith | 2nd Ed<br>Roper | d., Else<br>, "Sep | evier, 2<br>paration | 2013.<br>n Proce | 8 20 | | | | | | CHES416 | Advanced Statistics for<br>Petrochemical Industries | 3 | 2 | 2 | | 4 | | | | 4 | | | | | Pre-requisites; (Advanced Pro | bability a | nd Sta | tistics | ) MTH | IS204 | | | | | | | | | Variables and frequency distri<br>Sampling – Testing of Hypoth | | | | | | | | | | | | | Textbook | B.J. Dretzke "Statistics with M | icrosoft E | XCEL | " Ed. I | Pearso | on, 4 <sup>th</sup> | Edition, | 2008 | 7 | | | | | CHES417 | Advances in Petrochemical<br>Engineering | 3 | 2 | 2 | | | | | | 4 | | | | | Pre-requisites: (Unit Operation | ns) CHES | 301 | | | | | | | | | | | 0 | Selected topics in Petrochemi | cal Engine | eering | | | | ) C | | | | | | | Textbook | Advances in Petrochemicals, | by Vivek I | atel, | 2015, | ISBN | 978-95 | 3-51-2 | 176-3. | lon | | | |