PART [C]: SPECIALIZED PROGRAMS (14) MANUFACTURING AND MATERIAL ENGINEERING Program (MEM) برنامج هندسة التصنيع والمواد #### (14) Manufacturing and Material Engineering Program (MEM) برنامج هندسة التصنيع والمواد #### رؤية البرنامج VISION The vision of the manufacturing and material engineering program is offering educational program where education, learning and scientific research synergize to provide the society with the innovative mechanical design engineer capable of providing optimal solutions and leading improvement in his profession and contributing to the country's progress. طرح برنامج تعليمي يتكاتف فيه التعليم والتعلم والبحث العلمي على إمداد المجتمع بمهندس هندسة التصنيع والمواد مبتكر وقادر على تقديم الحلول المثلي وقيادة التطوير في مهنته والمساهمة في تقدم البلاد. #### رسالة البرنامج MISSION The mission of the material and manufacturing engineering program is to offer distinguished academic services to provide the business community with qualified manufacturing engineers capable of effectively using the scientific and technical knowledge they had acquired as students for satisfying the community's needs for engineers in the material and manufacturing discipline. تقديم خدمة تعليمية متميزة لإمداد قطاع الأعمال والمجتمع باحتياجاتهم من مهندسي التصنيع والمواد القادرين على الاستخدام الكفء والفعال للعلوم والمعارف التقنية والمهارات لمد احتياجات الصناعة وتقديم الحلول في مجال المواد والتصنيع # graduate attributes مواصفات الخريج gineering Profession The manufacturing and material engineering program has the following set of educational objectives: - Attracting outstanding local, regional, and international students by providing distinguished academic services and encouraging competitive scientific activities. - Providing the students with the fundamentals and foundation of basic and engineering sciences to solve technical problems. - Providing the students with broad professional education that covers the contemporary and growing aspects in the field of mechanical engineering. - Upgrading students' skills in the areas of effective communication with others and working effectively within a team, as well as raising the skills of innovative and creative thinking, with an emphasis on adherence to professional ethics - Providing an attractive working environment for distinguished faculty members and providing them with the facilities fcr improving performance and continuous development. - Developing the program's courses to keep pace with the successive developments in science and raise the competitiveness of the graduates. - Improving laboratory facilities to support effective learning and research activities. - Seeking cooperation with local, regional, and international educational and professional bodies to improve student's realization capacities and practical skills. #### مرجعية البرنامج PROGRAM BENCHMARK | NARS 2018 | LEVEL A | LEVEL B | LEVEL C | LEVEL D | |-----------|-----------------|-----------------|-----------|---------| | 1 | Totally Adopted | Totally Adopted | See below | NA | The MEM program has adopted the National Academic Reference Standards (NARS) for Engineering issued by the National Authority for Quality Assurance and Accreditation for Education (NAQAAE) as the program objects to ensure the satisfaction of the national quality assurance standards. The NARS 2018 for Engineering are broad statements that define the main characteristics and performance expected from all engineering students (LEVEL A) upon their graduation so that the graduate attributes of the MEM program can be achieved as follows: - Master a wide spectrum of engineering knowledge and specialized skills and can apply acquired knowledge using theories and abstract thinking in real life situations. - Apply analytic critical and systemic thinking to identify, diagnose and solve engineering problems with a wide range of complexity and variation. - Behave professionally and adhere to engineering ethics and standards. - Work in and lead a heterogeneous team of professionals from different engineering specialties and assume responsibility for own and team performance. - Recognize his/her role in promoting the engineering field and contribute to the development of the profession and the community. - Value the importance of the environment, both physical and natural, and work to promote sustainability principles. - Use techniques, skills, and modern engineering tools necessary for engineering practice. - Assume full responsibility for own learning and self-development, engage in lifelong learning and demonstrate the capacity to engage in post- graduate and research studies. - Communicate effectively using different modes, tools, and languages with various audiences; to deal with academic/professional challenges in a critical and creative manner. - Demonstrate leadership qualities, business administration and entrepreneurial skills. # In addition to the Competencies for All Engineering Programs the BASIC MECHANICAL Engineering graduate (LEVEL B) must be able to: - Model, analyze and design physical systems applicable to the specific discipline by applying the concepts of: Thermodynamics, Heat Transfer, Fluid Mechanics, solid Mechanics, Material Processing, Material Properties, Measurements, Instrumentation, Control Theory and Systems, Mechanical Design and Analysis, Dynamics, and Vibrations. - Plan, manage and carry out designs of mechanical systems and machine elements using appropriate materials both traditional means and computer-aided tools and software contemporary to the mechanical engineering field. - Select conventional mechanical equipment according to the required performance. - Adopt suitable national and international standards and codes; and integrate legal, economic, and financial aspects to design, build, operate, inspect, and maintain manufacturing equipment and systems. In addition to the competencies of all engineering and basic mechanical engineering, the Manufacturing and Materials program (LEVEL C) must be able to: - Analyze, evaluate, develop, and enhance the performance of manufacturing processes and systems using the knowledge acquired in the program. - Plan, select and improve the operations in the manufacturing of industrial products of different engineering materials, including modern and non-traditional manufacturing techniques. كلية الهندسة Faculty of Engineering # توصيف المقررات SPECIALIZED COURSES CONTENTS | Code | Name | Credit Hours | Category | Pre-requisite | |---------|-----------------------|--------------|----------|----------------------------| | MEMS280 | Engineering Seminar | 1 | DR | 30 CR.HRS. +
AA APROVAL | | MEMS281 | Industrial Training-1 | 1 | FR | 60 CR.HRS. +
AA APROVAL | | MEMS381 | Industrial Training-2 | 2 | DR | MEMS281. +
AA APROVAL | | MEMS481 | Graduation Project-1 | 1 | FR | 110 CR.HRS. 4
SOPHOMORE | | MEMS482 | Graduation Project-2 | 3 | DR | MEMS481 +
AA APROVAL | | Total | | 2+6 | | | # توصيف المقررات COURSES CONTENTS | | | Credit | Contact Hours | | | | | | | | |-----------|--|--|----------------------|-------------------|----------------------------------|---|---------------------------------|----------------------------|-------------------------------|----------------| | Code | Name/Content | Hours | Lec | Tut
(2) | App.
Tut | Lab | Stud | Off.
Tut | Off.
Hrs. | Total | | Faculty R | Requirements | | 0 3 | | | 100 -
100 - | | | 9 0 | 74 | | MEMS280 | Engineering Seminar | 1 | 1 | 0 | | | | | | 1 | | | Pre-requisites: 30 CR.HRS. | Pre-requisites: 30 CR.HRS. + AA APROVAL | | | | | | | | | | MEMOOOA | guest speaker should discuss implemented in his/her industrion the guest presentation and graded as Pass/Fail grade-system and trade-tiple Training A. | rial establis
I deliver the | hment.
ir own | Stude | nts exe | rcise w | riting bi | rief tech | nnical r | | | MEMS281 | Industrial Training-1 | 1 1 | 0 | 0 | | 2 | | | | 1 | | | Pre-requisites: 60 CR.HRS. | + AA APR | DVAL | | | | | | | | | | Training on industrial establish during a minimum period of the follow up visit to the training verthe industrial establishment protraining. The student submits a | ree weeks.
enue and k
rovides a fo | The promally rmal re | report
port or | training
on perf
n the sto | g advis
orman
udent's | or sche
ce of tra
perforn | dules a
inee(s
nance | it least
). A Me
during | one
ntor in | | | | 0 | | | (| Conta | ct Hou | rs | | | | | |---------|--|--|---------|------------|-------------|--------|----------|-------------|--------------|-----------|--|--| | Code | Name/Content | Credit
Hours | Lec | Tut
(2) | App.
Tut | Lab | Stud | Off.
Tut | Off.
Hrs. | Total | | | | MEMS381 | Industrial Training-2 | 2 | 0 | 0 | | | | | | 2 | | | | | Pre-requisites: MEMS281 | Pre-requisites: MEMS281 + AA Approval | | | | | | | | | | | | | Training on industrial establishments relevant to the program. Training lasts for total of 180 hours, during a minimum period of six weeks. The program training advisor schedules at least two follow-up visits to the training venue and formally report on performance of trainee(s). A Mentor in the industrial establishment provides a formal report on the student's performance during training. The student submits a formal report and presentation to be evaluated by a panel of three members with one member being an external examiner appointed from industry or other colleges of engineering. The course is graded as Pass/Fail grade-system. | | | | | | | | | | | | | MEMS481 | Graduation Project-1 | 1 | 0 | 2 | | | | | | 2 | | | | | Pre-requisites: 110 credits + SOPHOMORE | | | | | | | | | | | | | | of the program. In GP1, students provide a clear identification of a real-life problem that represents an actual need for the incustry or the community and reflects the mission and strategic objective of CUFE. Students are expected to survey the related literature, collect and interpret market data, and proposed an approach for the solution, using the engineering knowledge and skills acquired. The course is graded as Pass/Fail based upon a report/oral presentation stating the expected cost and required material, tools, and facilities | | | | | | | | | | | | | | | The second secon | ected c | ost ar | nd requ | ired n | nateriai | toois | and f | | | | | MEMS482 | port/oral presentation station
as well as a timed list of de
Graduation Project-2 | The second secon | cted c | ost ar | nd requ | ired n | nateriai | , toois | , and f | | | | | MEMS482 | as well as a timed list of de | liverables. | 1 | - 1 | nd requ | ired n | nateriai | , toois | , and f | acilities | | | #### متطلبات البرنامج PROGRAM REQUIREMENTS | Catego | ory | No. of courses | Course
Credit Hour | Total Credit
Hours | |----------------------|-----------------|----------------|-----------------------|-----------------------| | | | 1 | 4 | 4 | | Discipline | core/ | 19 | 3 | 57 | | Requirements
(DR) | compulsory | 1 | 2 | 2 | | (5.1,) | Elective | 0 | 0 | 0 | | Total DR courses | | 21 | | 63 | | | core/ | 1 | 2 | 2 | | Program | compulsory | 7 | 3 | 21 | | Requirement (PR) | Clastina | 0 | 2 | 0 | | | Elective | 7 | 3 , | 21 | | Total PR courses | otal PR courses | | 紀 | 44 | | Total Elective cours | es (DR & PR) | 7 | 3 | 21 | Discipline Requirements (DR) core/compulsory courses list | Code | Name | Credit
Hours | Pre-requisite | |---------|--|-----------------|------------------| | MTHS102 | Linear Algebra and Multivariable Integrals | 3 | MTHS003 | | MTHS104 | Differential Equations | 3 | MTHS003 | | MTHS114 | Numerical Analysis | 3 | MTHS102+ MTHS104 | | EPES201 | Electrical Engineering Fundamentals | Ing Pi | PHYS002 | | EPES303 | Electric Drive Systems | 3 | EPES201 | | MCNS101 | Thermodynamics | 3 | PHYS001 | | MCNS202 | Fluid Mechanics | 3 | MTHS002 | | MCNS326 | Heat Transfer | 3 | MCNS101 | | MDPS001 | Fundamentals of Manufacturing Engineering | 2 | NONE | | MDPS217 | Machine Drawing | 3 | INTS001 | | MDPS132 | Material Science | 3 | NONE | | MDPS232 | Engineering Materials | 3 | MDPS132 | | MDPS241 | Manufacturing Processes I | 3 | PHYS001 | | MDPS242 | Manufacturing Processes II | 3 | MDPS132 | | MDPS251 | Kinematics of Machine Components | 3 | EMCS001 | | MDPS261 | Stress Analysis | 3 | EMCS002 | كلية الهندسة Faculty of Engineering | Code | Name | Credit
Hours | Pre-requisite | |---------|--------------------------------|-----------------|------------------| | MDPS352 | Machine Design | 3 | MDPS261 | | MDPS354 | Machine and System Design | 4 | MDPS352+ MDPS355 | | MDPS355 | Dynamics of Machine Components | 3 | MDPS251 | | MDPS371 | Mechanical Vibrations | 3 | MDPS355 | | MDPS372 | Control System Dynamics | 3 | MDPS355 | | Total | | 63 | | #### Program Requirements (PR) core/compulsory courses list | Code | Name | Credit
Hours | Pre-requis <mark>ite</mark> | |---------|---|-----------------
-----------------------------| | MDPS321 | Fatigue, Creep and Fracture Mechanics | 3 | MDPS232 +
MDPS261 | | MDPS323 | Modern Manufacturing Processes | 3 | MDPS241 +
MDPS242 | | MDPS328 | Polymers Engineering | (13) | 70 Credits | | MDPS332 | Computer Aided Design and Manufacturing CAD/CAM | 3 | MDPS241 | | MDPS410 | Mechanical Lab | 2 | 108 CREDITS | | MDPS444 | Sheet Metal Processing | 3 | MDPS242 | | MDPS451 | Composite Materials: Design and Manufacturing | 3 | MDPS232+ 85 Credits | | MDPS482 | Quality Management | 3 | MTHS005 | | Total | olizad Tracka of Engineer | 23 | - family | # Program Requirements (PR) elective courses list | Code | Name | Credit
Hours | Pre-requisite | |-----------|--------------------------------------|-----------------|-------------------------| | ELECTIVE | S 7 courses (21 Credits) | | | | Group (A) | | | | | EPES450 | Programmable Logic Controllers | 3 | EPES303 | | MDPS322 | Advanced Casting processes | 3 | 85 CREDITS+
MDPS242 | | MDPS324 | Material Selection in Design | 3 | MDPS232 | | MDPS326 | Creep and high temperature materials | 3 | 85 CREDITS +
MDPS132 | كلية الهندسة Faculty of Engineering | Code | Name | Credit
Hours | Pre-requisite | | | | | |-----------|--|-----------------|--|--|--|--|--| | MDPS327 | Modeling and Simulation of Materials
Processing | 3 | MDPS132 +
MDPS242 | | | | | | MDPS333 | Powder Metallurgy | 3 | MDPS132 | | | | | | MDPS363 | Finite Element Analysis | 3 | MDPS261 | | | | | | MDPS425 | Mechanical Behavior of Materias | 3 | MDPS261+ MDPS132 | | | | | | MDPS426 | Structure of Materials | 3 | MDPS132 | | | | | | MDPS427 | Nanotechnology and Nanocrystalline Materials | 3 | MDPS132 +
MDPS323 | | | | | | MDPS428 | Advanced Topics in Manufacturing Processes | 3 | 85 Credits+ AA
Approval | | | | | | MDPS438 | Manufacturing Systems | 3 | MDPS241 +
MDPS242 | | | | | | MDPS447 | Advanced Welding processes | 3 | MDPS242+ 85
Credits+ AA
Approval | | | | | | MDPS452 | Advanced Topics in Materials Engineering | 3 | 85 Credits+ AA
Approval | | | | | | MDPS464 | Failure Analysis | 3 | MDPS261 +
MDPS232 | | | | | | MDPS492 | Computer Integrated Manufacturing CIM | 3 | MDPS381 +MDPS242 | | | | | | Group (B) | | | | | | | | | MDPS353 | Mechanism Design | 3 | MDPS355 | | | | | | MDPS381 | Fundamentals of Industrial Engineering | 3 | NONE | | | | | | MDPS390 = | Project Management | 3 | MDPS381 | | | | | | MDPS398 | Material Handling Systems | 93 | MDPS381 | | | | | | MDPS432 | Pressure Vessels and Piping | 3 | 85 Credits+ AA
Approval | | | | | | MDPS457 | Fluid Power Systems | 3 | MCNS202 +
MDPS372 | | | | | | MDPS473 | Automatic Control I | 3 | MDPS372 | | | | | | MDPS490 | Design for Manufacturing | 3 | MDPS381 +MDPS242 | | | | | | MDPS495 | Manufacturing Systems Design | 3 | MDPS381 | | | | | | MEPS345 | Turbomachinery I | 3 | MCNS202 | | | | | The student chooses (3) Elective courses from group (A), in addition to (4) courses from group (B). Registration is subject to academic approval. يختار الطالب عدد (4) مقررات من المجموعة (A) بالإضافة الى عدد (3) مقررات من المجموعة (B). ويخضع التسجيل للموافقة الاكاديمية #### Proposed Study Plan - 8 semesters - Including Freshman Level | | | | | | Contact Hours | | | | | | | | |--------|---------|--|--------|-----|---------------|---------|-----|------|---------|--------|-------|--| | s | Code | ode Name | Credit | Lec | Tut (2) | App Tut | Lab | Stud | Off Tut | Off Hr | Total | | | - | PHYS001 | Mechanical Properties of Matter and Thermodynamics | 3 | 2 | | 2 | 1 | | | | 5 | | | ER | MTHS002 | Calculus I | 3 | 2 | 2 | | | | | | 4 | | | | EMCS001 | Engineering Mechanics - Dynamics | 3 | 1 | 2 | | 1 | | | | 4 | | | E S | CHES001 | Chemistry of Engineers | 2 | 1 | 2 | 7 | | | y | :=: | 3 | | | SEMEST | INTS001 | Engineering Graphics | 3 | 2 | | | | 3 | | | 5 | | | S | INTS005 | Information Technology | 2 | 1 | | | 3 | | | | 4 | | | | GENS004 | Proficiency and Capacity Building | 1 | 1 | Α. | | | | N. | A | 1 | | | | | Sub-Total | 19 | 13 | 6 | 2 | 4 | 3 | 0 | 0 | 28 | | | | | | | Contact Hours | | | | | | | | |------|---------|--|----|---------------|---------|----------|-----|------|---------|----------|-------| | s | Code | Name | | Lec | Tut (2) | App. Tut | Lab | Stud | Off Tut | Off. Hrs | Total | | | MTHS003 | Calculus 2 | 3 | 2 | 2 | | | | | | 4 | | 7 | EMCS002 | Engineering Mechanics - Statics | 2 | 1 | 2 | | | | | | 3 | | ER | PHYS002 | Electricity and Magnetism | 3 | 2 | 0 | 2 | 1 | 55 | 610 | m | 5 | | STE | MTHS005 | Introduction to Probability and Statistics | 3 | 2 | 2 | 0 | 91 | 00 | OIL | 711 | 4 | | E | MCNS101 | Thermodynamics | 3 | 2 | 2 | | | | | | 4 | | SEME | MDPS132 | Materials Science | 3 | 2 | 0 | 2 | 1 | | | | 5 | | S | MDPS001 | Fundamentals of Manufacturing
Engineering | 2 | 1 | 3 | 1 | 2 | | | | 4 | | | | Sub-Total | 19 | 12 | 8 | 5 | 4 | 0 | 0 | 0 | 29 | | | | | | | | Con | itac | t Ho | urs | , | | |---------|------------------|--|-----------------|-----|---------|---------|------|------|---------|--------|-------| | s | Code | Name | Credit
Hours | Lec | Tut (2) | App Tut | Lab | Stud | Off Tut | Off Hr | Total | | | MDPS261 | Stress Analysis | 3 | 2 | 2 | | | | | | 4 | | | MDPS217 | Machine Drawing | 3 | 1 | 2 | 0 | 2 | | | | 5 | | 33 | MDPS241 | Manufacturing Processes I | 3 | 2 | | 1 | 2 | | | | 5 | | | MTHS102 | Linear Algebra and Multivariable Integrals | 3 | 2 | 2 | 0 | | | | | 4 | | SEMESTE | MTHS104 | Ordinary Differential Equations & Mathematical Equations | 3 | 2 | 2 | 0 | | | | | 4 | | M | GENS00X | E-0 | 2 | 2 | | | | | | | 2 | | 0, | E-A
(GENS005) | Elective E-A (Writing and Presentation Skills) | 2 | 2 | A | | 4 | | | | 2 | | | | Sub-Total | 19 | 13 | 10 | 1 | 2 | 0 | 0 | 0 | 26 | | | | | 5 | | | Cor | itac | t Ho | ours | | | |----------|---------|-------------------------------------|--------|-----|---------|----------|------|------|---------|----------|-------| | s | Code | Name | Credit | Lec | Tut (2) | App. Tut | Lab | Stud | Off Tut | Off. Hrs | Total | | - 22 | EPES201 | Electrical Engineering Fundamen;als | 3 | 2 | | 3 | - | | | | 5 | | 4 | | Fluid Mechanics 20/0 nt - noti | 130 | 2 | (2 | Pr | nt | 20 | CIL | n | 4 | | SEMESTER | MDPS251 | Kinematics of Machine Components | 3 | 2 | 6 | 3 | VI | UU | OIG | 711 | 5 | | S | | Engineering Materials | 3 | 2 | 2 | | | | | | 4 | | ۱₩ | MTHS114 | Numerical Analysis | 3 | 2 | 2 | 0 | | | | | 4 | | 员 | MDPS242 | Manufacturing Processes II | 3 | 2 | | 2 | 1 | | | | 5 | | .07 | MEMS280 | Seminar | 1 | 1 | | | 3.00 | | | | 1 | | | | Sub-Total | 19 | 13 | 6 | 8 | 1 | 0 | 0 | 0 | 28 | | | | | 2000000000 | | | Cor | itac | t Ho | urs | , | | |----------|-----------------|---|-----------------|-----|---------|---------|------|------|---------|--------|-------| | s | Code | Name | Credit
Hours | Lec | Tut (2) | App Tut | Lab | Stud | Off Tut | Off Hr | Total | | | MDPS352 | Machine Design | 3 | 2 | | 3 | | | | | 5 | | | MCNS326 | Heat Transfer | 3 | 2 | 2 | | | | | | 4 | | 3 | MDPS328 | Polymers Engineering | 3 | 2 | | 3 | | | | | 5 | | Ш | MDPS355 | Dynamics of Machine Components | 3 | 2 | | 3 | | | | | 5 | | S | EPES303 | Electric Drive Systems | 3 | 2 | | 3 | | | | | 5 | | SEMESTER | E-A
(GENS120 | Elective E-A (Fund. of Economics and Accounting) | 2 | 2 | | | | | | | 2 | | 0, | E-A | Elective E-A (Fundamental of
Management, Risk and Environment) | 2 | 2 | | | | | | | 2 | | | | Sub-Total | 19 | 14 | 2 | 12 | 0 | 0 | 0 | 0 | 28 | | | | | 1 | | | Cor | ntac | t Ho | ours | | | |----------|---------|--|--------|-----|---------|----------|------|------|---------|----------|-------| | s | Code | Name | Credit | Lec | Tut (2) | App. Tut | Lab | Stud | Off Tut | Off. Hrs | Total | | | MDPS372 | Control System Dynamics | 3 | 2 | _ | 2 | 1 | | | | 5 | | 9 ~ | MDPS354 | Machine and System Design | 240 | 2 | 4 | Dr | of | no | oir | nn | 6 | | 1 | MDPS371 | Mechanical Vibrations 0 | 130 | 2 | 2 | | UI | 50 | 211 | 711 | 4 | | SEMESTER | MDPS332 | Computer Aided Design and
Manufacturing CAD/CAM | 3 | 2 | 2 | | | | | | 4 | | įμ | MDPS321 | Fatigue, Creep and Fracture Mechanics | 3 | 2 | 2 | | | | | | 4 | | | XXXSXXX | Program Elective 1 | 3 | 2 | 2 | | | | | | 4 | | | | Sub-Total | 19 | 12 | 12 | 2 | 1 | 0 | 0 | 0 | 27 | | | | | | | | Cor | itac | t Ho | urs | • | | |-----|---------|--------------------------------|--------|-----|---------|---------|------|------|---------|--------|-------| | s | Code | Name | Credit | Lec | Tut (2) | App Tut | Lab | Stud | Off Tut | Off Hr | Total | | | MDPS482 | Quality Management | 3 | 2 | 2 | | | | | | 4 | | - | | Sheet Metal Processing | 3 | 2 | 0 | 2 | 1 | | | | 5 | | Щ | MDPS323 | Modern Manufacturing Processes | 3 | 2 | 2 | | | | | | 4 | | ST | XXXSXXX | Program Elective 2 | 3 | 2 | 2 | 2 | | | · · | | 4 | | | | Program Elective 3 | 3 | 2 | 2 | | | | | | 4 | | Ε̈́ | | Program Elective 4 | 3 | 2 | 2 | | | | | | 4 | | 0) | | Graduation Project I | 1 | 0 | 2 | | | | | | 2 | | | | Sub-Total | 19 | 12 | 12 | 2 | 1 | 0 | 0 | 0 | 27 | | | | | | | Sir 3 | Cor | ntac | t Ho | ours | | ì | |----------|---------|--|--------|-----|---------|----------|------|------|---------|----------|-------| | S | Code | Name | Credit | Гес | Tut (2) | App. Tut | Lab | Stud | Off Tut | Off. Hrs | Total | | | GENS30X | E-1 | 2 | 2 | | | | | | | 2 | | 8 | MDPS410 | Mechanical Lab | 2 | 1 | | | 3 | | | | 4 | | SEMESTER | MDPS451 | Composite Materials: Design and
Manufacturing | 3 | 2 | 2 | | | | | | 4 | | S | XXXSXXX | Program Elective 5 | 3 | 2 | 2 | Dr | of | 00 | oiz |
nn | 4 | | 🖺 | XXXSXXX | Program Elective 6 \ \ \ \ U | 3 | 2 | 2 | | UI | 22 | 211 | | 4 | | S | XXXSXXX | Program Elective 7 | 3 | 2 | 2 | | | | | | 4 | | | MEMS482 | Graduation Project II | 3 | 1 | 4 | | | | | | 5 | | | | Sub-Total | 19 | 12 | 12 | 0 | 3 | 0 | 0 | 0 | 27 | کلیه الهندسه Faculty of Engineering # توصيف المقررات COURSES CONTENTS | | | Credit | | | (| onta | ct Ho | urs | | | |------------|--|--|------------------------------|--|--|--|--|---|--|-------------------------------------| | Code | Name/Content | Hours | Lec | Tut
(2) | App.
Tut | Lab | Stud | Off.
Tut | Off.
Hrs | Total | | Discipline | Compulsory Courses | | | | | | | | | | | MTHS102 | Linear Algebra and
Multivariable Integrals | 3 | 2 | 2 | 0 | | | | | 4 | | | Pre-requisites: MTHS003 Solving Linear Systems, Vector Orthonormal Bases, The Eige Functions of Matrices. Function and its Applications, Vector Fie Applications, Line and Surface I | nvalue I
ns of Sevelds, Curl | Proble
veral \
and | m; D
/ariab
Diverç | iagona
les, Ti
gence, | lization
he Gra | n of M | Matrices
of a Sc | s, Con | nputing
unction | | References | - Calculus Early Transcendentals", by - Elementary Linear Algebra with App | J. Stewar | t, 8th e | dition, 2 | 2015, C | | | | | | | MTHS104 | Differential Equations Pre-requisites: MTHS003 | 3 | 2 | 2 | 0 | | 1 | | | 4 | | References | First-order differential equation equations; modeling with first equations; method of undetermination order differential equations, shifting theorems using Laplace transform; Fouries 1- "A First Course in Differential Equation of Prifferential | st order
nined co
ions; sel
, convol
r series;
tions with I | differences solution Fourier | erentia
ents; volution
theore
er tran | l equivariations; La
em; so
sform. | nations
on of p
place
olution | higher
carame
transfor
s of d | er-orde
eters; r
orm; p
ifferent | er diff
nodelin
ropertion
tial eq
Dennis C | erentiang with
es and
uations | | MTHS114 | Numerical Analysis | 3 | 2 | 2 | 0 | | | | | - | | | | The state of s | | | | | | | | 4 | | | Pre-requisites: MTHS102 + MTH | HS104 | 0.0 | | | | | | | 4 | | 100 | | Credit | | | (| onta | ct Ho | urs | 0 | 98 | |------------|---|--|--|---|--|--|--|--|--|---------------------------------------| | Code | Name/Content | Hours | Lec | Tut
(2) | App.
Tut | Lab | Stud | Off.
Tut | Off.
Hrs | Total | | EPES201 | Electrical Engineering
Fundamentals | 3 | 2 | 0 | 3 | | | | | 5 | | | Pre-requisites: PHYS002 | | | | | | | | | | | | Electrical elements and electrical divider rules, star-delta transfer voltages and Thevenin's theore (average and RMS values, voltages and complex representations of factor correction). Three phase balanced loads, three phase por | ormation)
em). First
age and
sine was
circuits | t order
currer
ves, o
(line a | lysis
er cap
nt wav
concep
and ph | of DC
acitive
reform
of of in
nase v | transi
s). Ana
npedar
oltages | ts (bra
ents. T
alysis once, po
s, star a | inch c
ime van
of AC conver ar
and de | urrents
arying
ircuits
nalysis, | , node
signals
(vector
power | | References | A. R. Hambley, Electrical Engine | | | | | | | | rson. 2 | 2018. | | EPES303 | Electric Drive Systems | 3 | 2 | 0 | 3 | | | | A . | 5 | | | Pre-requisites: EPES201 | | | | | 4 | | | 100 | | | | Speed Control, Inverter-fed Dr
Characteristics, Drive Circuits, C
SP. C. Sen, Principles of Electric | Course P
Machine | roject.
s and | Powe | r Elect | | | | 7 | 3 | | MCNS101 | Thermodynamics | 3 | 2 | 2 | 0 | | | | | 4 | | | Pre-requisites: PHYS001 | | 0 | | ů. | | | | | 2 | | Sp | Basic concepts. Pure substance
law of thermodynamics and co
course project | | | | | | | | | | | References | Claus Borgnakke and Richard E
Wiley, 2019. | . Sonnta | g, Fur | ndame | entals (| of Ther | modyn | amics, | 10th E | dition, | | MCNS202 | Fluid Mechanics | 3 | 2 | 2 | 0 | | | | | 4 | | | Pre-requisites: MTHS002 | | | | | | | | | | | | Fluid kinematics, flow types, Inte
momentum and Energy equation
modeling, Viscous flow in pip
Course project computer oriente | ons, App
es and | licatio | ns. S | imilitud | de and | dimer | nsional | analys | sis and | | References | SPhilip M. Gerhart, Andrew L. | | John | I. Ho | chsteir | n, Mur | nson, \ | oung/ | and C |)kiishi's | | | Fundamentals of Fluid Mechanic | | | | | Carried Contract | osmotes. | | over the set of | | | Name/Content Heat Transfer | Credit | Company of the last las | | | onta | ct Ho | urs | | | |--
---|--|---|--|---|---|---
---|--| | Heat Transfer | | Lec | Tut
(2) | App.
Tut | Lab | Stud | Off.
Tut | Off.
Hrs | Total | | | 3 | 2 | 2 | 0 | | | | | 4 | | Pre-requisites: MCNS101 | | | | - | | | | | | | conduction with internal heat gen
and extended surfaces, unste
dimensionless groups, natural a
Fundamentals of heat transfer by | eration, st
eady con
nd forced
radiation (| eady of
duction
conve
Case s | conduction, tudies | ction wi
onvection
use of
and co | th varia
on: fu
of employmenter | able the
ndamer
irical co
applica | rmal contals of orrelations. | onduction
of contains
ons. Ra | vity, fins
vection
adiation | | | | | | n, Adrie | nne S. | Lavine, | Fundar | mentals | of Hea | | | | 1 | 0 | 1 | 2 | | | | 4 | | Engineering | | | | | 5 2 | | | | 10000 | | Pre-requisites: NONE | | | 1 | | | | | | | | Mikell P. Groover, Fundamentals Edition, Wiley, 2019. | | | 5 | | terials, | Process | es, and | d Syste | | | | 3 | 2 | 010 | 2 | 1 | | | | 5 | | | - | | | - | | | | | - | | structures, crystal imperfect
mechanisms and plastic deform
cast iron, Phase transformation
Metals. Mechanical testing of m | tions, D
nation, ph
ns and in
netals: ten | iffusion
ase di
sother
asion, d | n, N
agran
mal h
comp | lechar
ns, Iror
neat tre
ression | ical
carbo
eatmer
bend | propert
on phas
nts (TT
ling, tor | ies, se diag
T), Cla
sion, f | Strengt
ram, T
assifica
aardnes | thening
ypes of
ation of
ss. | | | emwisch | watena | 115 SU | ence a | nu Eng | meening | . An in | iroducii | on, rou | | Machine Drawing | 3 | 1 | 2 | 0 | 2 | | | | 5 | | Pre-requisites: INTS001 | d 10 | | | | | | | | 200 | | | tual Med
dimension | | limits | | | | | | sembly | | | conduction with internal heat gen and extended surfaces, unstending dimensionless groups, natural and Fundamentals of heat transfer by and Mass Transfer, 6th Edition, John Fundamentals of Manufacturing Engineering Pre-requisites: NONE Engineering Materials - Elemprocesses- metal forming products of Metal cutting and finishing products of Manufacturing and Fundamentals Edition, Wiley, 2019. Materials Science Pre-requisites: NONE Introduction to materials enginestructures, crystal imperfect mechanisms and plastic deform cast iron, Phase transformation Metals. Mechanical testing of mes William D. Callister Jr., David G. R. Edition, Wiley, 2018. Machine Drawing Pre-requisites: INTS001 | conduction with internal heat generation, st and extended surfaces, unsteady condimensionless groups, natural and forced Fundamentals of heat transfer by radiation (as Frank P. Incropera, David P. DeWitt, Theodorand Mass Transfer, 6th Edition, John Wiley & Fundamentals of Manufacturing 2 Engineering Pre-requisites: NONE Engineering Materials - Elements of processes - metal forming processes - Metal cutting and finishing processes - 3D printing as Mikell P. Groover, Fundamentals of Modern Edition, Wiley, 2019. Materials Science 3 Pre-requisites: NONE Introduction to materials engineering, a structures, crystal imperfections, D mechanisms and plastic deformation, photostic iron, Phase transformations and in Metals. Mechanical testing of metals: tenes william D. Callister Jr., David G. Rethwisch, Edition, Wiley, 2018. Machine Drawing 3 Pre-requisites: INTS001 | conduction with internal heat generation, steady of and extended surfaces, unsteady conduction dimensionless groups, natural and forced convergence for the control of | conduction with internal heat generation, steady conduct and extended surfaces, unsteady conduction. Condimensionless groups, natural and forced convection, Fundamentals of heat transfer by radiation Case studies and Mass Transfer, 6th Edition, John Wiley & Sons, 2006. Fundamentals of Manufacturing 2 1 0 Engineering Pre-requisites: NONE Engineering Materials - Elements of Manufacturing processes - Modern Ma 3D printing and finishing processes - Modern Manufacturing and Mikell P. Groover, Fundamentals of Modern Manufacturing Edition, Wiley, 2019. Materials Science 3 2 0 Pre-requisites: NONE Introduction to materials engineering, atomic structures, crystal imperfections, Diffusion, Materials Mechanical testing of metals: tension, computes william D. Callister Jr., David G. Rethwisch, Materials Science Edition, Wiley, 2018. Machine Drawing 3 1 2 Pre-requisites: INTS001 | conduction with internal heat generation, steady conduction will and extended surfaces, unsteady conduction. Convection dimensionless groups, natural and forced convection, use of Fundamentals of heat transfer by radiation. Case studies and construction of the process of the Edition of the Engineer Land Mass Transfer, 6th Edition, John Wiley & Sons, 2006. Fundamentals of Manufacturing 2 1 0 1 Engineering Pre-requisites: NONE Engineering Materials - Elements of Manufacturing Proprocesses - metal forming processes - Shaping of plastic Metal cutting and finishing processes - Modern Manufacturing: Materials Composed of the Edition, Wiley, 2019. Materials Science 3 2 0 2 Pre-requisites: NONE Introduction to materials engineering, atomic structure a structures, crystal imperfections, Diffusion, Mechan mechanisms and plastic deformation, phase diagrams, Iron cast iron, Phase transformations and isothermal heat transformation, wiley, 2018. Machine Drawing 3 1 2 0 Pre-requisites: INTS001 | conduction with internal heat generation, steady conduction with variational extended surfaces, unsteady conduction. Convection: full dimensionless groups, natural and forced convection, use of empty Fundamentals of heat transfer by radiation. Case studies and computer as Frank P. Incropera, David P. DeWitt, Theodore L. Bergman, Adrienne S. and Mass Transfer, 6th Edition, John Wiley & Sons, 2006. Fundamentals of Manufacturing 2 1 0 1 2 Engineering Pre-requisites: NONE Engineering Materials - Elements of Manufacturing Processes processes - metal forming processes - Shaping of plastic materials and finishing processes - Modern Manufacturing, and printing and finishing processes - Modern Manufacturing: Materials, Edition, Wiley, 2019. Materials Science 3 2 0 2 1 Pre-requisites: NONE Introduction to materials engineering, atomic structure and instructures, crystal imperfections, Diffusion, Mechanical mechanisms and plastic deformation, phase diagrams, Iron carbor cast iron, Phase transformations and isothermal heat treatmer Metals. Mechanical testing of metals: tension, compression, bend estimated by the processes and Eng Edition, Wiley, 2018. Machine Drawing 3 1 2 0 2 Pre-requisites: INTS001 | conduction with internal heat generation, steady conduction with variable the and extended surfaces, unsteady conduction. Convection: fundamental dimensionless groups, natural and forced convection, use of empirical conductions of heat transfer by radiation Case studies and computer applicated from the process. Frank P. Incropera, David P. DeWitt, Theodore L. Bergman, Adrienne S. Lavine, and Mass Transfer, 6th Edition, John Wiley & Sons, 2006. Fundamentals of Manufacturing 2 1 0 1 2 Engineering Pre-requisites: NONE Engineering Materials - Elements of Manufacturing Processes - Coprocesses - metal forming processes - Shaping of plastic material - Metal cutting and finishing processes - Modern Manufacturing, additive 3D printing as Mikell P. Groover, Fundamentals of Modern Manufacturing: Materials, Process Edition, Wiley, 2019. Materials Science 3 2 0 2 1 Pre-requisites: NONE Introduction to materials engineering, atomic structure and interatom structures, crystal imperfections, Diffusion, Mechanical propert mechanisms and plastic deformation, phase diagrams, Iron carbon phase cast iron, Phase transformations and isothermal heat treatments (TT Metals, Mechanical testing of metals: tension, compression, bending, to sewilliam D. Callister Jr., David G. Rethwisch, Materials Science and Engineering Edition, Wiley, 2018. Machine Drawing 3 1 2 0 2 Pre-requisites: INTS001 | conduction with internal heat generation, steady conduction with variable thermal cand extended surfaces, unsteady conduction. Convection: fundamentals of dimensionless groups, natural and forced convection, use of empirical correlation fundamentals of heat transfer by radiation Case studies and computer applications. Serank P. Incropera, David P.
DeWitt, Theodore L. Bergman, Adrienne S. Lavine, Fundamental Mass Transfer, 6th Edition, John Wiley & Sons, 2006. Fundamentals of Manufacturing 2 1 0 1 2 Engineering Pre-requisites: NONE Engineering Materials - Elements of Manufacturing Processes - Casting processes - metal forming processes - Shaping of plastic material - Joining Metal cutting and finishing processes - Modern Manufacturing, additive manual printing and finishing processes - Modern Manufacturing: Materials, Processes, and Edition, Wiley, 2019. Materials Science 3 2 0 2 1 Pre-requisites: NONE Introduction to materials engineering, atomic structure and interatomic bor structures, crystal imperfections, Diffusion, Mechanical properties, mechanisms and plastic deformation, phase diagrams, Iron carbon phase diagrast iron, Phase transformations and isothermal heat treatments (TTT), Clametals. Mechanical testing of metals: tension, compression, bending, torsion, for Metals. Mechanical testing of metals: tension, compression, bending, torsion, for Edition, Wiley, 2018. Machine Drawing 3 1 2 0 2 Pre-requisites: INTS001 | Frank P. Incropera, David P. DeWitt, Theodore L. Bergman, Adrienne S. Lavine, Fundamentals and Mass Transfer, 6th Edition, John Wiley & Sons, 2006. Fundamentals of Manufacturing | | t and the | | Credit | | | (| Conta | ct Ho | urs | 0 | 20 | |-----------|---|--|--|---|--|--|--|---------------------------------------|---------------------------------|---| | Code | Name/Content | Hours | Lec | Tut
(2) | App.
Tut | Lab | Stud | Off.
Tut | Off.
Hrs | Total | | MDPS232 | Engineering Materials | 3 | 2 | 2 | | | | | | 4 | | | Pre-requisites: MDPS132 | | | | | | | | | | | | Heat treatments of steel, Cla | ssification | of A | Alloy : | steels, | Non- | ferrous | metal | s and | alloys | | | copper and its alloys and alumi
Introduction to Composites, Intr | | | | _ | rdening | g, Intro | duction | to Po | lymers | | Reference | sWilliam D. Callister Jr., David | | | | | Scie | nce ar | nd Eng | gineeri | ng: Ar | | | Introduction, 10th Edition, Wiley | , 2018. | | rel: | 2 | | | | | 47. | | MDPS241 | Manufacturing Processes I | 3 | 2 | 1 | 2 | | | | | 5 | | | Pre-requisites: PHYS001 | | | | | | | | | | | Reference | test of geometrical shape: straig
sFundamentals of Machining an
Francis Inc | Name and Address of the Owner, where which | | | | Booth | royd, 3 | 3rd edi | tion, T | aylor 8 | | MDPS242 | Manufacturing Processes II | 3 | 2 | 0,5 | 2 | 1 | 2 | - 5 | 1 | 5 | | | Pre-requisites: MDP\$132 | * | | - 1 | | | | | 7 | | | Sp | Casting: Types of foundries, stallowances of patterns; Moldi defects. Forming: Metal forming processyield criterion; slip line fields; stallowed bulk and sheet metal forming processes; welding: Welding processes; welding: Welding processes; welded joints; weld testing and welding to welded joints; weld testing and welding. | ng processive stimation or occurrence of welding and of variation of variation of the control | esses
cation,
of fo
s; pred
powd
nergy
ous m | basic
orce a
cision
er for
source | material metal met | als; ga
l worki
ergy re
g proc
d their
lloys; r | ating a
ing con
equirent
esses;
charac | nd rise
cepts
nents;
feature | ering;
and platechnotes of o | casting
asticity
logy of
lifferent | | Reference | of welded joints; weld testing ar
Manufacturing Technology, Vol. | | | | | | RAO | 4th F | dition | | | | spring i doiniology, vol. | | | | | | | | | | Faculty of Engineering | | | Credit | | | (| Conta | ct Ho | urs | 0 | 20 | |-----------
--|---|---|--------------------------------------|--|--------------------------------------|---|--|--|--| | Code | Name/Content | Hours | Lec | Tut
(2) | App.
Tut | Lab | Stud | Off.
Tut | Off.
Hrs | Total | | MDPS251 | Kinematics of Machine
Components
Pre-requisites: EMCS001 | 3 | 2 | 2002 | 3 | | | | | 5 | | | Kinematics fundamentals: ge components, indexing mechan velocity and acceleration), Cam and equivalent mechanisms, Geometry and assembly conditional Software and case studies, Courties Studies Ca | nisms, in-follower
Gear train
tions, Si
irse proje | nkage
mech
ns (sin
mulati
ect | mec
nanisn
nple,
on us | hanisn
ns: de:
compo
sing C | ns and
sign ar
ound a
omput | d plana
nd anal
and pla | ar robo
ysis, s
netary) | ots: (p
tandar
): Kine | d cams | | | sR.L. Norton, Design of Machine | | d. McG | | Hill, 20 | 19. | | | | | | MDPS261 | Stress Analysis | 3 | 2 | 2 | | | | | | 4 | | | Pre-requisites: EMCS002 | | | | | | | 1 | | -571 | | | combined bending and torsion
shear stress, allowable stresses
thin-walled vessels, springs, loa
oriented. | s, Mohr's | circle | repre | esentat | ion. A | pplication | on to s | imple t | frames | | Reference | Russell C. Hibbeler, Mechanics | of Mater | ials in | SI Ur | nits, 10 | th edit | ion, Pea | arson, | 2018. | | | MDPS352 | Machine Design | 3 | 2 | 0 | 3 | | | | | 5 | | Sr | Pre-requisites: MDPS261 | nt I- | noi | ne | erir | 10' - | rnt | 999 | inn | | | Sp. | Design procedures – Factors a loading – Safety factors and a various design calculations. Interest detachable joints: (threaded j (welding, interference fitting, rivelements: springs, power screw project. | allowab e
erpretato
oints, ke
eting, rive | stres
on and
eys ar
eting, r | sses -
l usag
nd sp
rivetin | Design of collines g, adh | gn va
ompon
– De
esion) | riants a
ent dat
sign o
– Desi | and intaction in the state of t | versior
ets. De
nanent
some m | ns. The
esign of
joints
nachine | | Reference | Richard Budynas, Keith Nisbett,
McGraw Hill, 2014. | Shigley' | s Mec | hanic | al Eng | ineerin | g Desig | gn, 10t | h Editi | on, | | Part of | | Credit | | | (| onta | ct Ho | urs | 0 | 88 | |-----------|---|--|-------------------------------------|---|--|--
---|--|--|--| | Code | Name/Content | Hours | Lec | Tut
(2) | App.
Tut | Lab | Stud | Off.
Tut | Off.
Hrs | Total | | MDPS354 | Machine and System Design | 3 | 2 | 4 | | | | | | 6 | | | Pre-requisites: MDPS352 + MD | PS355 | | | | | | | | | | | Design of Power transmission of design (spur, helical and bevel Design, Clutch design. | gears), S | Sprock | et an | d chai | n desi | gn, Belt | ts and | Pulley | , Brake | | | Course Project is a major activity project students in small group machines and components at mechanical modules. These with accuracy level commensurate constructed and assessed as to the evaluation of the project of fellow students and the instructed | os will ap
nd on m
Il be see
with the
o the ext
will be in
or. | ected,
eir fur
ent of
form | ne knowical of such nection verify of a p | owledg
design
as to t
al req
ving an | to hat hat to ha | uired of andle to andle to andle to aducation and andle and andle | n the
ne des
onal va
he de
n their
n grou | mecha
sign of
lue an
signs
require
p befo | nics of
f some
d of a
will be
ements
re the | | Reference | Richard Budynas, Keith Nisber
McGraw Hill, 2014. | tt, Shigle | y's M | echar | ical E | nginee | ering D | esign, | 10th | Edition | | MDPS355 | Dynamics of Machine
Components | 3 | 2 | - | 3 | | 1 | | | 5 | | | Pre-requisites: MDPS251 | | | - 10 | Π | | | -4 | 7 | | | Sp | Dynamics fundamentals and be acceleration, work and energy, bar linkage, reciprocating elem Flywheel design and turning rengines, W-engines, Simulation studies, Course project | virtual v
ents, Eng
moment | vork, b
gine d
diagra | oaland
ynam
m, m | cing of
ics, ba
julti-cy | mach
lancing
linder | inery: r
g of sir
engine | otating
igle cy
s: Line | eleme
linder
e, engir | ents, 4
engine
nes, V | | Reference | R.L. Norton, Design of Machine | ry, 6th ed | d. McG | raw h | Hill, 20 | 19. | | | | | | MDPS371 | Mechanical Vibrations Pre-requisites: MDPS355 | 3 | 2 | 2 | | | | | | 4 | | Poforonco | Introduction and basic conce vibrations of SDOF systems, vibrations of 2DOF systems, vibrations of 2DOF systems, vibration and case studies, cosS. S. Rao, Mechanical Vibration | vibration
ibration a
tions), v
urse proj | transi
absorba
ibratio
ect | missit
er, M
n me | oility, v
DOF s
easure | ibratio
ystem | n cont | rol, fre
iral fre | e and
quenci | force | | Page 1 | | Credit | | | (| Conta | ct Ho | ırs | 9 | 98 | |-----------|--|-------------|---------|------------|-------------|-------|-------|-------------|-------------|-------| | Code | Name/Content | Hours | Lec | Tut
(2) | App.
Tut | Lab | Stud | Off.
Tut | Off.
Hrs | Total | | MDPS372 | Control System Dynamics | 3 | 2 | 0 | 2 | 1 | | | | 5 | | | Pre-requisites: MDPS355 | | | | | - | | | | | | | Introduction to system dynami
electrical, electronic, hydraulic | | | | | | | | | | | | space approach; Time-domair
analysis - Root locus; Free | quency-do | main | analy | sis- E | | | | | | | | Computer simulation and case | studies. C | Course | proje | ect. | | 3567 | | 200510 | 88 | | Reference | sK. Ogata, Modern Control Eng | ineering, 5 | th ed., | Pear | son, 2 | 010. | | | | | | | Courses (Compulsory) | 0 | Contact Hours | | | | | | | | | |----------------------|---|---|--------------------------|-----------------------------|--------------|------------------|--------|-------------|-------------|---------|--| | Code | Name/Content | Hours | Lec | Tut
(2) | App.
Tut | Lab | Stud | Off.
Tut | Off.
Hrs | Total | | | MDPS321 | Mechanics | | | | | | | | | 4 | | | | Pre-requisites: MDPS232 + MI | DPS261 | 57 | / | | | | | | | | | | diagram, stress concentration | e regid is | al otro | co of | fanta | offoot | of ma | torial | Brobor | tion or | | | | mechanisms of crack propaga
based creep, diffusion creep | tion, high
o, grain b | tempe
oounda | rature
ary s | defo | rmation
stres | n mech | anisms | s (dislo | cation | | | Reference | mechanisms of crack propaga
based creep, diffusion creep
deformation mechanism map, | tion, high
o, grain b | tempe
oounda | rature
ary s | defo | rmation
stres | n mech | anisms | s (dislo | cation | | | | mechanisms of crack propaga
based creep, diffusion creep
deformation mechanism map, | tion, high
o, grain t
fracture to | tempe
oounda | erature
ary s
ess, cr | defoiliding) | rmation
stres | n mech | anisms | s (dislo | cation | | | Reference
MDPS323 | mechanisms of crack propaga
based creep, diffusion creep
deformation mechanism map, tes
Modern Manufacturing | tion, high
b, grain t
fracture to | tempe
counda
ughne | erature
ary s
ess, cr | defoiliding) | rmation
stres | n mech | anisms | s (dislo | cation | | | Code MDPS328 References MDPS332 | Polymers Engineering Pre-requisites: 70 credits This course offers engineering Treatment of materials properticular design of load-bearing and environment | es select | ion, m | echa | nical c | | | | Off.
Hrs | Total
5 | |------------------------------------|--|--|--|--|--------------------------------------|---------------------------------------|-------------------------------|---|-----------------------------|-----------------------------| | References | Pre-requisites: 70 credits This course offers engineering Treatment of materials propertion design of load-bearing and environment | g analys | is and | desi | gn teo | | | | tic pol | | | 11010101010 | This course offers engineering
Treatment of materials properti
design of load-bearing and envi | es select | ion, m | echa | nical c | | | | tic pol | vmers | | 11010101010 | Treatment of materials properti
design of load-bearing and envi | es select | ion, m | echa | nical c | | | | tic pol | vmers | | 11010101010 | | | | unoic | structu | ures are | | | proces | | | MDPS332 | | | - | | | | | | | | | | Computer Aided Design and
Manufacturing CAD/CAM | 3 | 2 | 2 | 0 | | | | | 4 | | | Pre-requisites: MDPS241 | | | | | | | | | • | | | programming, robot languages coding systems, group technologimitations. Computer aided progenerative process planning systandard. Computer Integrated CIMS, special manufacturing Manufacturing Cells, Course process. | ogy mach
ocess pl
stems, m
Manufa
ng syste | nine, c
anning
achina
cturing | ell, co
g: Red
ability
g: Typ | oncept
trieval
data s
es of | s of co
type p
ystems
manufa | omposit
process
s, comp | e part,
planr
outer go
g syste | benef
ling sy
enerate | its and
stems
ed time | | | | | | | | | | | | | | References | | | | | | | | | | | | References
MDPS410 | Mechanical Lab | 2 | 1 | 0 | 0 | 3 | | | | 4 | | | | Credit | | 937 J | (| Conta | ct Ho | urs | 0 | 81 | |------------|--|---------------------------------------
---------------------------|------------------------|-------------------------------|-----------------------------|---------------------------|-------------------------|----------------------------|------------------------------| | Code | Name/Content | Hours | Lec | Tut
(2) | App.
Tut | Lab | Stud | Off.
Tut | Off.
Hrs | Total | | MDPS444 | Sheet Metal Processing | 3 | 2 | 0 | 2 | 1 | | | | 5 | | | Pre-requisites: MDPS242 | | | | | | | | | | | | Review of Sheet metal industr
metals, Simple Stamping Ana
bending, Non-Conventional
progressive and compound di
presses. Course project | lysis, Dee
Sheet n | ep Dra | wing
proce | Die d | esign,
Die | Sheet
design | metal
n: Sta | sheari
indard | ng and
parts | | References | Sheet Metal Forming Funda
International, | mentals. | Tayla | n Alt | an & | Ermai | n Takk | aya, 2 | 2012. | ASM | | MDPS451 | Composite Materials: Design and Manufacturing | 3 | 2 | 2 | 0 | 0 | | | | 4 | | | Pre-requisites: MDPS131 + 85 | Credits- | AA Ap | prova | i | | | | | | | | Stress and strain analysis of
lamination theory, failure of
Manufacturing and processi
composites; Design philosoph
considerations related to man
structures. | riterion, f
ng techn
nies, as a | iber-m
iques
pplied | atrix
of r
to st | interfa
netal-,
tructur | acial f
polyr
al poly | eatures
mer-,
meric | s and
and c
compo | intera
eramic
sites. | actions
-matrix
Design | | References | | | | - 1 | | | | | | | | MDPS482 | Quality Management | 3 | 2 | 2 | 0 | | | | | 4 | | | Pre-requisites: MTHS005 | | | | | | | | | | | C | Introduction to quality systems
and standards: six sigma and | ISO. Ree | | ering. | Statis | | ality co | ontrol: | control | | | 2h | for variables and attributes, pro
function deployment. Quality of | | | | | | nce-sar | npling | plans. | Quality | Cairo Credit Hours System Faculty of Engineering | | Courses (Electives) | | | | | | | | | | |-----------------------|--|---|---|---------------------------------|--|---|---|---|---|---| | Group A | | _ | | | | | | | | | | | | Credi: | | | | Conta | ct Ho | | 10" | | | Code | Name/Content | Hours | Lec | Tut
(2) | App.
Tut | Lab | Stud | Off.
Tut | Off.
Hrs | Total | | EPES450 | Programmable Logic
Controllers | 3 | 2 | 2 | 0 | 0 | | | | 4 | | | Pre-requisites: EPES303 | | | | | | 177 | | - | | | | Selecting a proper PLC configu | uration for | a give | en ap | plication | on. Har | rdware | structu | ire and | wiring | | | techniques. Basics of programming second processing). Programming second Networking. Building simple sintegrated with a PLC for sequence. | quential o | control
ry cor | task | s. Stru | ata ac | progra
quisitio | amming | g tech | niques | | References | | ziidai co ii | tioi pic | DICITI | 3. 000 | noc pro | ojeot. | | | | | MDPS322 | Advanced Casting Processes | 3 | 2 | 2 | 0 | 0 | | | | 4 | | MDI OCLE | Pre-requisites: 85 Credits + MD | 1000 | _ | - | | 1 | | - | | | | | processes, investment casting characteristics. Technology of | Selected | casti | ng Pr | rocess | es: Cla | ay bond | ded, sy | yntheti | c resir | | | | Selected
nded
mou
centrifug
echaniza | l casti
ld and
al cas
tion a | ng Pr
core
sting
nd au | makir
proce
utomat | es: Cla
ng, san
ss. Ca
tion in | d additi
sting
foundr | ded, sy
ives, m
defects
ies, us | yntheti
nould o
s, insp
se of | c resir
coating
ection
robots | | References | characteristics. Technology of
bonded, inorganic material bon
continuous casting process,
diagnosis and rectification, m
casting design, near net shape | Selected
nded mou
centrifug
echaniza | l casti
ld and
al cas
tion a | ng Pr
core
sting
nd au | makir
proce
utomat | es: Cla
ng, san
ss. Ca
tion in | d additi
sting
foundr | ded, sy
ives, m
defects
ies, us | yntheti
nould o
s, insp
se of | c resir
coating
ection
robots | | References
MDPS324 | characteristics. Technology of bonded, inorganic material bon continuous casting process, diagnosis and rectification, m casting design, near net shape foundries Materials Selection in Design Pre-requisites: MDPS232 | Selected nded mou centrifugate chanizate casting, | l casti
ld and
al cas
tion a
polluti | ng Pricore sting and auton co | rocess
makir
proce-
utomat
ntrol, e | es: Cla
ng, san
ss. Ca
tion in
energy | ay bond
d additi
asting
foundr
and wa | ded, sylves, modefects ries, us | yntheti
nould of
s, insp
se of
anager | c resir
coating
pection
robots
ment in | | MDPS324 | characteristics. Technology of bonded, inorganic material bon continuous casting process, diagnosis and rectification, m casting design, near net shape foundries Materials Selection in Design Pre-requisites: MDPS232 Classification of all engineer Materials selection charts; Performance of the control | Selected mou centrifuguechanizate casting, | I casti Id and al cas tion a polluti 2 | ng Pricore sting and auton co | rocess
makir
proce-
utomat
ntrol, e | es: Cla
ng, san
ss. Ca
tion in
energy | d additional string foundrand was | ded, sylves, modefects ries, usaste ma | yntheti
nould of
s, insp
se of
anager | c resir
coating
pection
robots
ment in | | MDPS324 References | characteristics. Technology of bonded, inorganic material bon continuous casting process, diagnosis and rectification, m casting design, near net shape foundries Materials Selection in Design Pre-requisites: MDPS232 Classification of all engineer Materials selection charts; Performance of the control | Selected mou centrifugate casting, | l casti
ld and
al cas
tion a
polluti
2
erial;
indice | ng Pricore sting nd au on co | rocess
makir
proce-
utomat
ntrol, e | es: Cla
ng, san
ss. Ca
tion in
energy | d additional string foundrand was | ded, sylves, modefects ries, usaste ma | yntheti
nould of
s, insp
se of
anager | c resir
coating
pection
robots
ment in
4 | | MDPS324 | characteristics. Technology of bonded, inorganic material bon continuous casting process, diagnosis and rectification, m casting design, near net shape foundries Materials Selection in Design Pre-requisites: MDPS232 Classification of all engineer Materials selection charts; Performance of the control | Selected mou centrifuguechanizate casting, | I casti Id and al cas tion a polluti 2 | ng Pricore sting and auton co | rocess
makir
proce-
utomat
ntrol, e | es: Cla
ng, san
ss. Ca
tion in
energy | d additional string foundrand was | ded, sylves, modefects ries, usaste ma | yntheti
nould of
s, insp
se of
anager | c resing coating coating rection robots ment in | | MDPS324 References | characteristics. Technology of bonded, inorganic material bon continuous casting process, diagnosis and rectification, m casting design, near net shape foundries Materials Selection in Design Pre-requisites: MDPS232 Classification of all engineer Materials selection charts; Performed Creep and High Temperature | Selected mou centrifugate chanizate casting, | l casti
ld and
al cas
tion a
polluti
2
erial;
indice | ng Pricore sting nd au on co | makir
proces
utomat
ntrol, e | es: Cla
ng, san
ss. Ca
tion in
energy | d additional string foundrand was | ded, sylves, modefects ries, usaste ma | yntheti
nould of
s, insp
se of
anager | c resir
coating
pection
robots
ment in | | MDPS324 References | characteristics. Technology of bonded, inorganic material bon continuous casting process, diagnosis and rectification, m casting design, near net shape foundries Materials Selection in Design Pre-requisites: MDPS232 Classification of all engineer Materials selection charts; Performaterials | Selected neuron ded mou centrifugate chanizate casting, and a second commance of the | l casti ld and al cas tion a polluti 2 erial; indices 2 ss. Ma temp | ng Procore sting and auton co | rocess makin process pro | es: Cla
ig, san
ss. Ca
tion in
energy
0
properti
etry factorials,
eramics | ds of existing dislocation | ded, sylves, modefects ies, useste materials in gli | ynthetinould of an ager | c resing coating pection robots ment in 4 andices di grain el, el | | | | Credi: | | | (| Conta | ct Ho | urs | | | |------------|--|--|-----------------------------------|---|--|--|----------------------------|---|--|--| | Code |
Name/Content | Hours | Lec | Tut
(2) | App.
Tut | Lab | Stud | Off.
Tut | Off.
Hrs | Total | | MDPS327 | Modelling and Simulation of
Materials Processing | 3 | 2 | 2 | | | | | | 4 | | | Pre-requisites: MDPS132 + MDI | PS242 | | | | | | | | | | | Overview and hand-on practice for
sheet metal forming, polymer injec-
technique, insight to the underlying | ction, etc. | sumi | mary o | of num | erical n | nethods | | | | | References | Computer aided manufacturing. By T
CAD/CAM Computer aided design a
Printice Hall. | | | | | | | | . Zimm | ers. | | MDPS333 | Powder Metallurgy | 3 | 2 | 2 | 0 | | | | | 4 | | | Pre-requisites: MDPS132 | | | | | | | | | 200 | | Deference | of compaction, sintering, full-d
compact characterization, applica
magnetic, and biomedical component | ation of p | | | | | | | | | | References | | | _ | | / | _ | _ | | | | | MDPS363 | Finite Element Analysis | 3 | 2 | 2 | 0 | | | | | 4 | | | Pre-requisites: MDPS261 | | | 5 | | | | | | | | Sn | Basic principles of continuum m
solution of practical problems in s
and other field problems. Kinema
relations, conservation laws, virtu
equations using finite element me
purpose finite element analysis pr | solid, struatics of a
lal work,
ethods. S
rogram. (| deform
and valuation
Course | , and
ation,
ariation
of ce
proje | fluid n
strain
nal pri
entral p | nechan
and st
nciples
problem | tress m
Discress susing | at and in
easure
etization
an ex | mass to
s, cons
n of go
isting g | ransfer
stitutive
verning
eneral | | References | Nam-Ho Kim, Bhavani V. Sankar, As
2nd Edition, Wiley, 2018. | shok V. Ku | ımar, İr | troduc | ction to | Finite E | lement. | Analysis | and D | esign, | | MDPS381 | Fundamentals of Industrial | 3 | 2 | 0 | 3 | 0 | | | | 5 | | | Engineering | | | | | | | | | | | | Pre-requisites: None | | | | | | | | | | | | This course provides an introduc | | | | | | | | | | | | concepts, principles, and tool | | | | | | | | The state of s | The state of s | | | efficiency, and quality in manu
production systems design, we | | | | | | | | | | | | control, and quality control. The | | | | | | | | | _ | | | as well as the various career op | | | | | | | | | 5 11010 | | References | Farrokh Sassani, Industrial Engine
Management, Mercury Learning and | ering Fo | undatio | ns: B | | | | | ngineer | ing and | | 0.00 | | Credi | ļ.,, | SV 3 | (| Conta | ct Ho | urs | 110 | | |------------|--|---|--|--|--|--|--|---|---|---| | Code | Name/Content | Hours | Lec | Tut
(2) | App.
Tut | Lab | Stud | Off.
Tut | Off.
Hrs | Total | | MDPS425 | Mechanical Behavior of
Materials | 3 | 2 | 2 | 0 | 0 | | | | 4 | | | Pre-requisites: MDPS261 + MDI | PS132 + | 85 Cr | edits+ | - AA A | pprova | ıl | | | | | | Advanced studies of deformation aspects of deformation. Elastic processing. Fracture mechanic creep deformation. | city and | plast | icity f | heorie | s and | proble | ems in | defor | mation | | References | | | | | | | | | | | | MDPS426 | Structure of Materials | 3 | 2 | 2 | 0 | 0 | | | | 4 | | | Pre-requisites: MDPS132 | | | | | | | | | | | | kinematic, and dynamical theo
neutrons. Interpretation of diffi
scattering in perfect and im
description of structure emphasi | raction perfect | oattern
crysta | s and | d inte | nsity d | listribut
ous ma | ions, a | applica
Con | tion to | | References | | | | | | | _ | | | | | MDPS427 | Nanotechnology and
Nanocrystalline Materials | 3 | 2 | 2 | 0 | 0 | | 1 | | 4 | | | Pre-requisites: MDPS132 + MDI | | | - 1 | | | | | | | | | Introduction to concepts of nar
functional structures designed
mechanics. Phenomenal at | from ato | omic d | or mo | lecula
action | r scale
to Na | . Intro | duction
erials. | o to qu
Oven | uantum
view o | | Sp | general synthesis and processithography, dip-pen lithography have been synthesized for delectronic materials, electronic applications in polymers and bid Nano- technology, Nano-crystal dimensional nanotubes, nanowifilms, and specialized nano-fer Processing into higher order diproperties of nanomaterials. Approperties | and self
certain a
catalysis
technolo
line mate
res, and
atures o
imension | applica
and
and
ogy fiel
erials.
I Nand
on sub
ns. Ch | nbly.
stions
fuel
ds.
Synth
rods
estrate | in n
cells,
nesis o
; 2-dir
es. Ch | iew of
carbor
of 0-din
mension
naracte | some r
chnolog
n nand
mension
nal nar
erization | nanoma
ny: Na
na tube
nal nan
noribbo
n of n | aterials
no ca
s and
nopartions and
anoma | talysis
othe
cles, 1
d Nand
terials | | | | Condi | | | (| Conta | ct Ho | urs | | | |-----------------------|---|--
--|---|--|--|--|--|--
--| | Code | Name/Content | Credi:
Hours | Lec | Tut
(2) | App.
Tut | Lab | Stud | Off.
Tut | Off.
Hrs | Tota | | MDPS428 | Advanced Topics in
Manufacturing Processes | 3 | 2 | 2 | 0 | 0 | | | | 4 | | | Pre-requisites: 85 Credits+ AA | Approval | | | | | | | | | | | The course covers advance technologies. The topic may in | nclude fle | exible | manu | facturi | ng sys | tems, | reverse | e engir | neerin | | | and prototyping, integrated mar | | | | - | | Committee Commit | the second second | | | | | manufacturing, The course manufacturing processes. | includes | inde | epend | ent r | esearc | h pro | ject o | n adv | ance | | Reference | s | | | | | | | | 415 | 90 | | MDPS438 | Manufacturing Systems | 3 | 2 | 2 | 0 | | | | | 4 | | | Pre-requisites: MDPS241 + MD | PS242 | | | | | | - | | | | | NC machines, basic principles;
and flexible manufacturing sy
machining; Manufacturing engin
improvement; Concurrent engin | stems; F | Product
Proces | tion
ss pla | lines;
nning; | Machi
Proble | ning ce
em solv | enters;
ving an | High
d cont | inuou | | 2 | and flexible manufacturing sy
machining; Manufacturing engin
improvement; Concurrent engin
control; Quality control. | stems; F | Product
Proces | tion
ss pla | lines;
nning; | Machi
Proble | ning ce
em solv | enters;
ving an | High
d cont | inuou | | References | and flexible manufacturing sy
machining; Manufacturing engin
improvement; Concurrent engin
control; Quality control. | stems; F
neering
eering de | Produc
Proces
esign f | ction
ss pla
for ma | lines;
nning;
nufact | Machi
Proble
turabili | ning ce
em solv | enters;
ving an | High
d cont | inuou
ng an | | References
MDPS447 | and flexible manufacturing sy
machining; Manufacturing engin
improvement; Concurrent engin
control; Quality control. Advanced Welding processes | stems; F
neering
eering de | Production Proces | ction
ss pla
for ma | lines;
nning;
nufact | Machi
Proble | ning ce
em solv | enters;
ving an | High
d cont | inuou | | | and flexible manufacturing sy
machining; Manufacturing engin
improvement; Concurrent engin
control; Quality control. Advanced Welding processes Pre-requisites: MDPS242 + 85 | stems; F
neering de
eering de
3
Credits- | Produce
Procesesign f | ction
ss pla
for ma | lines;
nning;
nufact | Machi
Proble
turabili
0 | ning ce
em solv
ty; Proc | enters;
ving an
duction | High
d cont
planni | inuou
ng and | | | and flexible manufacturing sy machining; Manufacturing engine improvement; Concurrent engine control; Quality control. Advanced Welding processes Pre-requisites: MDPS242 + 85 Physics of welding arc, chara | stems; F
neering de
eering de
3
Credits-
cteristics | Product
Procesesign f | etion
ss pla
for ma
or ma
2
prova
c, mo | lines;
nning;
nufact | Machi
Probleturability
0 | ning ceem solvery; Proc | enters;
ving an
luction | High
od cont
planni
elding | inuou
ng and
4
fluxes | | | and flexible manufacturing sy
machining; Manufacturing engin
improvement; Concurrent engin
control; Quality control. Advanced Welding processes Pre-requisites: MDPS242 + 85 | stems; Ferneering decering dec | Produce
Procesesign f | etion
ess pla
for ma
or ma
2
prova
c, mo | odes caracter | Machi
Proble
turability
0
of meta
istics | ning comen solvers process of trans | enters;
ving an
duction | High
od cont
planni
elding
ower s | fluxes | | | and flexible manufacturing sy machining; Manufacturing engine improvement; Concurrent engine control; Quality control. Advanced Welding processes Pre-requisites: MDPS242 + 85 Physics of welding arc, charal electrode coating, classification pulsed and inverter type power weldability tests, Weldability of | stems; Ference of the control of the cource | Product
Procesesign for
a San Apport of arestrodes
power, power
n. Pla | etion
ss pla
for ma
2
pprova
c, mo
e, cha
er sou
in car | odes caracter | Machi
Probleturabilities
0
of meta
istics
or resisteel, D | ning ceem solver, Proceed transfer welder transfer welder transfer | enters;
ving an
luction
lefer, we
ding powelding
mation | High
od cont
planni
elding
ower s
g, welco | fluxes
source
lability
neatin | | | and flexible manufacturing sy machining; Manufacturing engine improvement; Concurrent engine control; Quality control. Advanced Welding processes Pre-requisites: MDPS242 + 85 Physics of welding arc, chara electrode coating, classification pulsed and inverter type power weldability tests, Weldability of temperature, Stainless steel, us theory of heat flow, cooling rate | stems; Femering deering deerin | Product
Procesesign for
esign for
AA Ap
of ar
ectrode
powers, powers
n. Pla
effler
nination | etion ss pla for ma 2 prova c, mo e, cha er sou in car s diag n, sele | o o o o o o o o o o o o o o o o o o o | Machi
Probleturabilities
of meta
istics
or resisteel, D
Heat fle
of wel | ning ceem solver, Proceed welco | enters;
ving an
duction
ding powelding
velding,
aramete | High od control planni planni planni planni power significers based and the control preference pref | fluxes source lability neating cancers sed of the second s | | | and flexible manufacturing sy machining; Manufacturing engine improvement; Concurrent engine control; Quality control. Advanced Welding processes Pre-requisites: MDPS242 + 85 Physics of welding arc, charal electrode coating, classification pulsed and inverter type power weldability tests, Weldability of temperature, Stainless steel, us theory of heat flow, cooling ratheat flow analysis, residual stream. | stems; Ference of School o | Product
Procesesign for
esign for
AA Ap
of ar
ectrode
power
n. Pla
effler
ination
its m | etion ss pla for ma 2 prova c, mo e, cha er sou in car s diag n, sele easur | odes control solution in the control of | Machi
Proble
turabilities
of meta
istics
or resisteel, D
leat flo
of well | al trans of welce etermin ow in we ding pa | enters;
ving an
duction
ding powelding
velding
velding,
aramete
control | elding ower so significant of dis | fluxes
source
lability
neatin
cance
sed o | | | and flexible manufacturing sy machining; Manufacturing engine improvement; Concurrent engine control; Quality control. Advanced Welding processes Pre-requisites: MDPS242 + 85 Physics of welding arc, chara electrode coating, classification pulsed and inverter type power weldability tests, Weldability of temperature, Stainless steel, us theory of heat flow, cooling ratheat flow analysis, residual stransports. | stems; Freering deering second second deering | 2 AA Ap of ar ectrode , powe n, Pla effler ints m eture a | etion ss pla for ma 2 prova c, mo e, cha er sou in car s diag n, sele easur and to | odes of the control o | Machi
Proble
turabilities
of meta
istics
or resisteel, D
Heat floor
of well
is, types | al trans of welce stance etermin ow in we ding pa s and of | enters;
ving an
duction
ding powelding
velding,
velding,
aramete
control
d its a | elding ower so, welco of pret significant of disapplicant | fluxes
source
lability
neating
cancer
sed o
tortion | | | and flexible manufacturing sy machining; Manufacturing engine improvement; Concurrent engine control; Quality control. Advanced Welding processes Pre-requisites: MDPS242 + 85 Physics of welding arc, charal electrode coating, classification pulsed and inverter type power weldability tests, Weldability of temperature, Stainless steel, us
theory of heat flow, cooling ratheat flow analysis, residual stream. | stems; Freering deering deerin | Product
Procesesign for a part of | 2 prova
c, mo
e, cha
er sou
in car
s diag
n, seli-
easur
and to | o des contracter de | Machi
Proble
turabilities
of meta
istics
or resisteel, Deleat flo
of well
is, types
sed of | al trans of welce etermine ow in we ding pa s and c ting an control | enters;
ving an
duction
ding powelding
velding,
aramete
control
d its a | elding ower signification of disapplications ance a | fluxes
source
lability
neating
cance
sed of
tortion | Faculty of Engineering | | | 0 | l , | | (| Conta | ct Ho | urs | | | |------------|---|---|--|----------------------------|-----------------------------------|-------------------------------------|--|---|--------------------------------------|--| | Code | Name/Content | Credi:
Hours | Lec | Tut
(2) | App.
Tut | Lab | Stud | Off.
Tut | Off.
Hrs | Total | | MDPS452 | Advanced Topics in Materials
Engineering | 3 | 2 | 2 | 0 | 0 | | | | 4 | | | Pre-requisites: 85 Credits+ AA A | | | | | | | | | | | | The course covers advanced technologies. The topics may properties, Applications of nano as nano sensors and nano tra characteristics of their materials | include
materials
nsistors, | nano
s, Con
Devid | mater
cepts
ce per | rials a
and v
rforma | nd the
vorking
nce as | eir phy
princip
relate | sical a
ples of
d to m | and el
device
nicrostr | ectrica
s such
uctura | | D (| new materials. course project | | | _ | _ | | _ | 1 | _ | _ | | References | | | | | | | _ | _ | | | | MDPS464 | Failure Analysis | 3 | 2 | 2 | | | | | | 4 | | | | | | | | | | | | | | | Pre-requisites: MDPS261 + MDI
Functional and structural failure
wear, fretting and corrosive we | es. Tribo
ar. Desig | gn aga | ainst v | vear. I | Modes | of bulk | failure | es, exc | cessive | | | Functional and structural failure wear, fretting and corrosive werdeformation, buckling, yielding, collapse, fracture mechanics and detection of failures. Appl | es. Tribo
ar. Desig
plastic
d crack | gn aga
instat
propag | ainst voility, gation | vear. I
creep
Dam | Modes
and d
age-to | of bulk
creep r
lerant o | failure
upture
design. | es, exc
Incre | cessive
menta
fication | | | Functional and structural failure wear, fretting and corrosive werdeformation, buckling, yielding, collapse, fracture mechanics and detection of failures. Appl Course project. | es. Tribo
ar. Desig
plastic
d crack
lications | gn aga
instat
propag
to so | ainst voility, gation | vear. I
creep
Dam
nechar | Modes
and d
age-to
nical o | of bulk
creep r
lerant o
ompone | failure
upture
design.
ents. (| es, exc
Incre
Identi
Case s | cessive
menta
fication | | | Functional and structural failure wear, fretting and corrosive werdeformation, buckling, yielding, collapse, fracture mechanics and detection of failures. Appl | es. Tribo
ar. Desig
plastic
d crack
lications
of Mater | gn aga
instat
propag
to so | ainst voility, gation | vear. I
creep
Dam
nechar | Modes
and d
age-to
nical o | of bulk
creep r
lerant o
ompone | failure
upture
design.
ents. (| es, exc
Incre
Identi
Case s | cessive
menta
fication | | References | Functional and structural failure wear, fretting and corrosive were deformation, buckling, yielding, collapse, fracture mechanics and detection of failures. Appl Course project. Russell C. Hibbeler, Mechanics Computer Integrated | es. Tribo
ar. Desig
plastic
d crack
ications
of Mater | gn aga
instat
propag
to so
ials in | ainst voility, gation me n | vear. I
creep
Dam
nechar | Modes
and dage-to
nical co | of bulk
creep r
lerant o
ompone | failure
upture
design.
ents. (| es, exc
Incre
Identi
Case s | cessive
menta
fication
tudies | Cairo Credit Hours System Faculty of Engineering | Program (| Courses (Electives) | | | | | | | | | | | |-------------|--|----------|---------|------------|-------------|----------|---------|-------------|-------------|---------|--| | Group B | | | | | | | | | | | | | 10000 W | | Credi: | | | (| Conta | ct Ho | urs | | | | | Code | Name/Content | Hours | Lec | Tut
(2) | App.
Tut | Lab | Stud | Off.
Tut | Off.
Hrs | Total | | | MDPS353 | Mechanism Design | 3 | 2 | 2 | 0 | 0 | | | | 4 | | | | Pre-requisites: MDPS355 | | | | | | | | | | | | | Introduction and basic conce | epts, M | echan | isms | and | struct | ures, | Numbe | er syn | thesis | | | - 4 | Paradoxes, Isomers, Linkage tr | | | | | | | | | | | | | and motion generation Graphica | | | | | | | | | | | | | Three-position synthesis, Quick- | | | | | | | | | | | | | planar mechanisms, Optimal pl | | | | | | | | | | | | | toggles, Introduction to spatial r | | | | | ulation | using | Compi | uter Gr | aphic | | | | and MATLAB Software and case | | | | | | | | | | | | References | | | | | | 19. | | 7 | | | | | MDPS390 | Project Management | 3 | 2 | 2 | 0 | | | | | 4 | | | | Pre-requisites: MDPS381 | | | 99 | | (11) | | | | | | | | Introduction to Project planning | | | | | | | | | | | | | Breakdown Structure, Respon- | | | | | | | | | | | | | possibilities using the Critical Pa | | 4. | | | _ | | | | | | | | Technique (PERT). Resource | | | | | | | | | | | | | schedule), Gantt Chart, Time ov | renaps | Time a | and co | ost cor | ntroi, R | isk mo | nitoring | g and c | control | | | | Computer applications. "A Guide to the Project Manage | mont Do | dy of l | (nowl | odao | DMPO | V Cuid | lo\" by | Droios | | | | References | Management Institute. | ment bo | uy oi i | MIOWI | euge | COUNTY | r Guid | e) by | riojec | · | | | MDPS398 | Material Handling systems | -3 E | 2 | 2 | 0 | 0 | | | | 4 | | | WIDI 5550 | Pre-requisites: MDPS381 | nr - | nor | nn | - | 10° H | rnt | 225 | lon- | -4 | | | Op | This course covers the principle: | s and ta | chnia | os of | mater | ial ban | dling s | vetome | which | focus | | | | on the movement, storage, cont | | | | | | | | | | | | | include material handling equi | | | | | | | | | | | | | storage systems; and control sy | | | | | | | | | | | | | handling systems in various indu | | | | | | | | | | | | References | "Material Handling and Logistics | | | | | | ou loud | ori, aric | a logiot | | | | 10101011003 | material Flariding and Logistics | , J 0011 | | ·········· | 01., 01 | W. | | | | | | | | 200 | Credi: | ļ., | | (| Conta | ct Ho | urs | 10. | | |-----------------------|---|--|---|--|---|--|--|---|---|------------------------| | Code | Name/Content |
Hours | Lec | Tut
(2) | App.
Tut | Lab | Stud | Off.
Tut | Off.
Hrs | Total | | MDPS432 | Pressure Vessels and Piping | 3 | 2 | 2 | 0 | 0 | | | | 4 | | | Pre-requisites: 85 Credits+ AA A | Approval | | | | | | | | | | | Introduction to ASME Boiler, Pre 2. B31 code series. Material sel theories. Design for internal and geometries. Design of openings examination and testing. Piping piping supports. Computer imple | external
and noz
stress ar | Basic p
I press
zles. F
nd flex | orincip
sure. [
abric
ibility | les in
Design
ation r
analys | design
of end
equirer
ses, de | . Types
I closur
ments.
sign ar | of load
es with
Non-do
nd select | ds. Fai
variou
estruct
ction o | lure
us
ive
f | | MDPS457 | Project Fluid Power Systems | 3 | 2 | 2 | 0 | 0 | | | 1 | 4 | | | Pre-requisites: MCNS202 + MD | PS372 | _ | | | | | | | | | | geometric volume units, flow rate
directional control valves; direct
spools, static characteristics of v | and pilot | topera | ated, s | static f | low for | ces act | ing on | poppe | ts and | | | throttling systems -Basics of de- | sign of fl | uid po | | | | | | | | | References | throttling systems -Basics of de-
and mobile applications - Cours | sign of fl
se projec | uid po
t. | wer s | ystems | | | | | | | References
MDPS473 | throttling systems -Basics of de- | sign of fl
se projec | uid po
t. | wer s | ystems | | | | | | | | throttling systems –Basics of de-
and mobile applications – Cours
"Material Handling and Logistics" b | sign of fl
se projec
y John A | uid po
t.
White | wer s | ystem: | s and e | | | | trial | | | throttling systems –Basics of de-
and mobile applications – Cours
"Material Handling and Logistics" b
Automatic Control I | sign of fl
se projec
y John A
3 | uid po
t.
White
2 | , Jr., e | ystems
t al.
0 | s and e | example | es from | indus | trial 4 | | MDPS473 | throttling systems –Basics of de-
and mobile applications – Cours
"Material Handling and Logistics" b
Automatic Control I
Pre-requisites: MDPS372
Introduction to feedback control
the Root locus method; Control
and Tuning. Computer simulatio | sign of fl
se project
y John A
3
systems
Design to
and ca | uid po
t.
White
2
s; Con
by the | , Jr., e | et al. 0 vstem | 0
charac
e proje | example
teristics
se met | es from | indus | trial 4 sign by | | MDPS473 | throttling systems –Basics of de-
and mobile applications – Cours
"Material Handling and Logistics" b
Automatic Control I
Pre-requisites: MDPS372
Introduction to feedback control
the Root locus method; Control
and Tuning. Computer simulatio
K. Ogata, Modern Control Engin | sign of flate project by John A. 3 systems Design to and called a great project by a great project pr | uid po
t.
. White
2
s; Con
by the
use stu | y Jr., e 2 trol sy Frequidies, Pear | vstems t al. 0 vstem ency- cours son, 2 | 0
charac
e proje | example
teristics
se met | es from | indus | 4
sign by | | MDPS473 | throttling systems –Basics of de-
and mobile applications – Cours
"Material Handling and Logistics" b
Automatic Control I
Pre-requisites: MDPS372
Introduction to feedback control
the Root locus method; Control
and Tuning. Computer simulatio | sign of flate project by John A. 3 systems Design to and called a great project by a great project pr | uid po
t.
White
2
s; Con
by the | , Jr., e | et al. 0 vstem | 0
charac
e proje | example
teristics
se met | es from | indus | trial 4 sign by | | Facul | Lty | of | |-------|-----|-----| | Engin | eer | ing | | Code | Name/Content | Credi: | Contact Hours | | | | | | | | |------------|--|-------------|---------------|------------|-------------|--------|--------|-------------|-------------|---------| | | | Hours | Lec | Tut
(2) | App.
Tut | Lab | Stud | Off.
Tut | Off.
Hrs | Total | | | Turbomachinery I | 3 | 2 | 2 | 0 | 0 | | | | 4 | | | Pre-requisites: MCNS202 Fans, Compressors, Pumps and Turbines: Terminology - Basic concepts and laws Similarity - Turbo-machinery Classifications - Axial flow fans and compressors - Centrifugations, fans and compressors - Axial and radial flow hydraulic turbines - Sizing in Variou Applications (steam and gas power plants, compressed air system, chilled water system AC air distribution system, pneumatic control system, etc.), Course Project | | | | | | | | | | | References | V. Dakshina Murty, Turboma
CRC Press, 2018. | achinery: (| Conce | ots. A | pplica | tions, | and De | esign, | First I | Edition | Specialized Tracks of Engineering Profession