PART [C]: SPECIALIZED PROGRAMS (11) MECHANICAL DESIGN ENGINEERING Program (MDE) برنامج هندسة التصميم الميكانيكي كلية الهندسة Faculty of Engineering #### (11) Mechanical Design Engineering Program (MDE) برنامج هندسة التصميم الميكانيكي #### رؤية البرنامج VISION The vision of the mechanical design engineering program is offering educational program where education, learning and scientific research synergize to provide the society with the innovative mechanical design engineer capable of providing optimal solutions and leading improvement in his profession and contributing to the country's progress. طرح برنامج تعليمي يتكاتف فيه التعليم والتعلم والبحث العلمي على إمداد المجتمع بمهندس تصميم ميكانيكي مبتكر قادر على تقديم الحلول المثلى وقيادة التطوير في مهنته والمساهمة في تقدم البلاد. #### رسالة البرنامج MISSION The mission of the mechanical design ergineering program is to offer distinguished academic services to provide the labor sector and the community with qualified mechanical design engineers capable of competing locally, regionally, and internationally and effectively applying the acquired scientific, technical knowledge and skills to resolve industrial problems and provide solutions and have the capacity for professional self-career development. تقديم خدمة تعليمية متميزة لإمداد قطاع الأعمال والمجتمع باحتياجاتهم من مهندسي التصميم الميكاتيكي القادرين على المنافسة محليا وإقليمياً ودوليا وعلى الاستخدام الكفء والفعال للعلوم والمعارف الثقلية والمهارات لحل مشاكل الصناعة وتقديم الحلول والقادرين على التطوير الذاتي مهنياً. # GRADUATE ATTRIBUTES (Profession Profession The mechanical engineering program has the following set of educational objectives: - Attracting outstanding local, regional and international students by providing distinguished academic services and encouraging competitive scientific activities. - Providing the students with the fundamentals and foundation of basic and engineering sciences to solve technical problems. - Providing the students with broad professional education that covers the contemporary and growing aspects in the field of mechanical engineering. - 4. Upgrading students' skills in the areas of effective communication with others and working effectively within a team, as well as raising the skills of innovative and creative thinking, with an emphasis on adherence to professional ethics Providing an attractive working environment for distinguished faculty members and providing them with the facilities fcr improving performance and continuous development. - Developing the program's courses to keep pace with the successive developments in science and raise the competitiveness of the graduates. - Improving laboratory facilities to support effective learning and research activities. - Seeking cooperation with local, regional and international educational and professional bodies to improve student's realization capacities and practical skills. #### مرجعية البرنامج PROGRAM BENCHMARK | NARS 2018 | LEVEL A | LEVEL B | LEVEL C | LEVEL D | |-----------|-----------------|-----------------|-----------|---------| | 1 | Totally Adopted | Totally Adopted | See below | NA | The MDE program has adopted the National Academic Reference Standards (NARS) for Engineering issued by the National Authority for Quality Assurance and Accreditation for Education (NAQAAE) as the program objects to ensure the satisfaction of the national quality assurance standards. The NARS 2018 for Engineering are broad statements that define the main characteristics and performance expected from all engineering students (LEVEL A) upon their graduation so that the MDE program graduate must be able to: - Master a wide spectrum of engineering knowledge and specialized skills and can apply acquired knowledge using theories and abstract thinking in real life situations. - 2. Apply analytic critical and systemic thinking to identify, diagnose and solve engineering problems with a wide range of complexity and variation. - 3. Behave professionally and adhere to engineering ethics and standards. - Work in and lead a heterogeneous team of professionals from different engineering specialties and assume responsibility for own and team performance. - Recognize his/her role in promoting the engineering field and contribute to the development of the profession and the community. - Value the importance of the environment, both physical and natural, and work to promote sustainability principles. - Use techniques, skills, and modern engineering tools necessary for engineering practice. - Assume full responsibility for own learning and self-development, engage in lifelong learning and demonstrate the capacity to engage in post- graduate and research studies. - Communicate effectively using different modes, tools, and languages with various audiences; to deal with academic/professional challenges in a critical and creative manner. - 10. Demonstrate leadership qualities, business administration and entrepreneurial skills. # In addition to the Competencies for All Engineering Programs the BASIC MECHANICAL Engineering (LEVEL A) must be able to: - Model, analyze and design physical systems applicable to the specific discipline by applying the concepts of: Thermodynamics, Heat Transfer, Fluid Mechanics, solid Mechanics, Material Processing, Material Properties, Measurements, Instrumentation, Control Theory and Systems, Mechanical Design and Analysis, Dynamics and Vibrations. - Plan, manage and carry out designs of mechanical systems and machine elements using appropriate materials both traditional means and computer-aided tools and software contemporary to the mechanical engineering field. - Select conventional mechanical equipment according to the required performance. - Adopt suitable national and international standards and codes; and integrate legal, economic, and financial aspects to design, build, operate, inspect and maintain mechanical equipment and systems. # In addition to the competencies of all engineering and basic mechanical engineering, the Mechanical Design Engineering (LEVEL C) graduate must be able to: - Use the concepts acquired to evaluate, develop, design, and improve the mechanical systems integrated with the electrical, thermal and hydraulic systems within the industrial projects. - Familiarize with the manufacturing process, the effective use of available resources and facilities, project planning and management, time and budget management, safety, and the standard regulations to execute reliable design. # توصيف المقررات SPECIALIZED COURSES CONTENTS | Code | Name | Credit Hours | Category | Pre-requisite | |---------|-----------------------|--------------|----------|-----------------------------| | MDES280 | Engineering Seminar | 1 | DR | 30 CR.HRS. +
AA APROVAL | | MDES281 | Industrial Training-1 | 1 | FR | 60 CR.HRS. +
AA APPROVAL | | MDES381 | Industrial Training-2 | 2 | DR | MDES281. +
AA APROVAL | | MDES481 | Graduation Project-1 | 1 | FR | 110 CR.HRS. +
SOPHOMORE | | MDES482 | Graduation Project-2 | 3 | DR | MDES481 +
AA APROVAL | | Total | | 2+6 | | | # توصيف المقررات COURSES CONTENTS | | | Credit | Contact Hours | | | | | | | | | |-----------|--|---|---|---|-------------------------------|---|---|----------------------------|--|-------------------------------------|--| | Code | Name/Content | Hours | Lec | Tut
(2) | App.
Tut | Lab | Stud | Off.
Tut | Off.
Hrs. | Total | | | Faculty F | Requirements | | 0 | 7 | | | | V | | -00
300 | | | MDES280 | Engineering Seminar | 1 | 1 | 0 | | | _ | | | 1 | | | C. | Pre-requisites: 30 CR.HRS. + AA APROVAL | | | | | | | | | | | | MDES281 | in his/her industrial establishn
presentation and deliver their
grade-system.
Industrial Training-1 | | | | | | | | | | | | | Pre-requisites: 60 CR.HRS. | + AA APROW | AL | 15 | | | | | | 10 | | | | Training on industrial establish during a minimum period of the up visit to the training venue a industrial establishment provides tudent submits a formal report one member being an externative course is graded as Pass | ree weeks. The
and formally red
des a formal red
art and present
al examiner ap | ports of
eport of
ation to
pointed | ram tra
on perfo
n the s
o be ev | aining a
ormand
tudent' | advisor
e of tra
s perfor
d by a p | schedu
ainee(s).
rmance
panel of | A Men
during
three r | east one
tor in the
training
nember | e follow
ne
j. The
rs with | | | Test of | | Credit | | | (| urs | 0 | 98 | | | |----------|---|-----------|-----------------|------------|-------------|-----------------|----------|-------------|--------------|----------------------| | Code | Name/Content Hou | Hours | Lec | Tut
(2) | App.
Tut | Lab | Stud | Off.
Tut | Off.
Hrs. | Total | |
MDES381 | Industrial Training-2 | 2 | 0 | 0 | | | | | | 2 | | | Pre-requisites: MDES281 + AA Approval | | | | | | | | | | | | Training on industrial establishments relevant to the program. Training lasts for a total of 180 hours, during a minimum period of six weeks. The program training advisor schedules at least two follow-up visits to the training venue and formally reports on performance of trainee(s). A Mentor in the industrial establishment provides a formal report on the student's performance during training. The student submits a formal report and presertation to be evaluated by a panel of three members with one member being an external examiner appointed from industry or other colleges of engineering. The course is graded as Pass/Fail grade-s/stem. | | | | | | | | | | | MDES481 | Graduation Project-1 | 1 | 0 | 2 | | | | | | 2 | | | Pre-requisites: 110 credits + SOPHOMORE | | | | | | | | | | | 11050400 | Students – in groups (or individually in some programs) - undertake a final project as part of the program. In GP1, students provide a clear identification of a real-life problem that represents an actual need for the industry or the community and reflects the mission and strategic objective of CUFE. Students are expected to survey the related literature, collect, and interpret market data, and proposed an approach for the solution, using the engineering knowledge and skills acquired. The course is graded as Pass/Fail based upon a report/oral presentation stating the expected cost and required material, tools, and facilities as well as a timed list of deliverables. | | | | | | | | | | | MDES482 | Graduation Project-2 | 3 | 1 | 4 1 | 1 | | | _ | / | 5 | | | Pre-requisites: MDES481 + AA | | No. in contrast | | | M 100 100 | | | | | | Sr | Graduation Project-2 is the second solutions to problems encountered stated in Graduation Project-1. A technical, economic, social, and expresenting direct conclusions. | during to | ne imp | the pr | tation p | rocess
submi | thus ful | filling t | he deliv | verables
deration | #### متطلبات البرنامج PROGRAM REQUIREMENTS | Catego | ory | No. of courses | Course
Credit Hour | Total Credit
Hours | |-----------------------|--------------|----------------|-----------------------|-----------------------| | | | 1 | 4 | 4 | | Discipline | core/ | 19 | 3 | 57 | | Requirements (DR) | compulsory | 1 | 2 | 2 | | | Elective | 0 | 0 | 0 | | Total DR courses | | 21 | | 63 | | | core/ | | 2 | 2 | | Program | compulsory | 7 | 3 | 21 | | Requirement (PR) | Floative | 0 | 2 | 0 | | | Elective | 7 | 3 , | 21 | | Total PR courses | | 15 | 紀 | 44 | | Total Elective course | es (DR & PR) | 7 | 3 | 21 | # Discipline Requirements (DR) core/compulsory courses list | Code | Name | Credit
Hours | Pre-requisite | |---------|--|-----------------|------------------| | MTHS102 | Linear Algebra and Multivariable Integrals | 3 | MTHS003 | | MTHS104 | Differential Equations | - 3 | MTHS003 | | MTHS114 | Numerical Analysis | 3 🖳 | MTHS102+ MTHS104 | | EPES201 | Electrical Engineering Fundamentals | 3 | PHYS002 | | EPES303 | Electric Drive Systems | 3 | EPES201 | | MCNS101 | Thermodynamics | 3 | PHYS001 | | MCNS202 | Fluid Mechanics | 3 | MTHS002 | | MCNS326 | Heat Transfer | 3 | MCNS101 | | MDPS001 | Fundamentals of Manufacturing Engineering | 2 | NONE | | MDPS132 | Material Science | 3 | NONE | | MDPS217 | Machine Drawing | 3 | INTS001 | | MDPS232 | Engineering Materials | 3 | MDPS132 | | MDPS241 | Manufacturing Processes I | 3 | PHYS001 | | MDPS242 | Manufacturing Processes II | 3 | MDPS132 | كلية الهندسة Faculty of Engineering | Code | Name | Credit
Hours | Pre-requisite | |---------|----------------------------------|-----------------|------------------| | MDPS251 | Kinematics of Machine Components | 3 | EMCS001 | | MDPS261 | Stress Analysis | 3 | EMCS002 | | MDPS352 | Machine Design | 3 | MDPS261 | | MDPS354 | Machine and System Design | 4 | MDPS352+ MDPS355 | | MDPS355 | Dynamics of Machine Components | 3 | MDPS251 | | MDPS371 | Mechanical Vibrations | 3 | MDPS355 | | MDPS372 | Control System Dynamics | 3 | MDPS355 | | Total | | 63 | | #### Program Requirements (PR) core/compulsory courses list | Code | Name | Credit
Hours | Pre-requisite | |---------|---|-----------------|-------------------| | EPES305 | Industrial Instrumentation | 3 | EPES303 | | MDPS370 | Mechanics of Solids | 3 (| MDPS261 | | MDPS332 | Computer Aided Design and Manufacturing CAD/CAM | 3 | MDPS241 | | MDPS363 | Finite Element Analysis | 3 | MDPS261 | | MDPS381 | Fundamentals of Industrial Engineering | 3 | NONE | | MDPS410 | Mechanical Lab | 2 | 108 CREDITS | | MDPS464 | Failure Analysis | 3 | MDPS261 + MDPS232 | | MDPS482 | Quality Management | 3 | MTHS005 | | Total | | 23 | | # Program Requirements (PR) elective courses list | Code | Name | Credit
Hours | Pre-requisite | |----------|-------------------------------------|-----------------|-------------------------------------| | ELECTIVE | S 7 courses (21 Credits) | | | | MDPS353 | Mechanism Design | 3 | MDPS355 | | MDPS398 | Material Handling Systems | 3 | MDPS381 | | MDPS399 | Product Development and Innovation | 3 | MDPS381 | | MDPS432 | Pressure Vessels and Piping | 3 | 85 Credits+ AA Approval | | MDPS421 | Tribology | 3 | 85 Credits+ AAA pproval | | MDPS442 | Advanced Finite Element Analysis | 3 | MDPS363+ 85 Credits+
AA Approval | | MDPS414 | Special Topics in Mechanical Design | 3 | 85 Credits+ AA Approval | | MDPS490 | Design for Manufacturing | 3 | MDPS381 + MDPS242 | كلية الهندسة Faculty of Engineering | Code | Name | Credit
Hours | Pre-requisite | |---------|---|-----------------|-------------------------| | MDPS323 | Modern Manufacturing Processes | 3 | MDPS241 + MDPS242 | | MDPS444 | Sheet Metal Processing | 3 | MDPS242 | | MDPS492 | Computer Integrated Manufacturing CIM | 3 | MDPS381 + MDPS242 | | EPES450 | Programmable Logic Controllers | 3 | EPES303 | | MDPS423 | Robotics Engineering | 3 | MDPS251 | | MDPS473 | Automatic Control I | 3 | MDPS372 | | MDPS457 | Fluid Power Systems | 3 | MCNS202 + MDPS372 | | MDPS458 | Hydraulic Servo Control | 3 | MDPS457 + MDPS473 | | MDPS474 | Automatic Control II | 3 | MDPS473 | | MDPS477 | Micro and Nano-Electromechan cal Systems | 3 | MDPS372 | | MDPS478 | Vehicle System Dynamics and Control | 3 | MDPS372 | | MDPS382 | Engineering Economy and Financial
Management | 3 | E-A (GENS120) | | MDPS383 | Operations Research I | 3 A | MTHS102 | | MDPS390 | Project Management | 3 50 | MDPS381 | | MDPS394 | Design of Experiments | 3 | MTHS005 | | MDPS395 | Human Factors and Ergonomics | / 3 | MDPS381 | | MDPS396 | Work Design and Measurement | 3 | MDPS381 | | MDPS397 | Safety Engineering | . 3 | MDPS381 | | MDPS484 | Production and Operations Management | 3 | MDPS381 | | MEPS345 | Turbomachinery I | 3 | MCNS202 | | MEPS425 | Renewable Energy | 3 | 85 Credits+ AA Approval | | MEPS435 | Internal Combustion Engines | 3 | 85 Credits+ AA Approval | Specialized Tracks of Engineering Profession #### Proposed Study Plan - 8 semesters - Including Freshman Level | | | | | Contact Hours | | | | | | | | |----------|---------|--|--------|---------------|---------|---------|-----|------|---------|--------|-------| | S | Code | Name | Credit | Lec | Tut (2) | App Tut | Lab | Stud | Off Tut | Off Hr | Total | | - | PHYS001 | Mechanical Properties of Matter and Thermodynamics | 3 | 2 | | 2 | 1 | | | | 5 | | 2 | MTHS002 | Calculus I | 3 | 2 | 2 | | | | | | 4 | | SEMESTER | EMCS001 | Engineering Mechanics - Dynamics | 3 | 1 | 2 | | 1 | | | | 4 | | E | CHES001 | Chemistry of Engineers | 2 | 1 | 2 | | | | | | 3 | | 2 | INTS001 | Engineering Graphics | 3 | 2 | | | | 3 | | | 5 | | S | INTS005 | Information Technology | 2 | 1 | | | 3 | | | | 4 | | | GENS004 | Proficiency and Capacity Building | 1 | 1 | A | | | | 1 | A | 1 | | | GENS001 | Critical and Creative Thinking | 2 | 2 | Ser 3 | | | | | | 2 | | | | Sub-Total | 19 | 13 | 6 | 2 | 4 | 3 | 0 | 0 | 28 | | | | | E Irrr | Contact Hours | | | | | | | | | |------------|-----------|--|--------|---------------|---------|----------|-----|------|---------|-----------|-------|--| | s | Code Name | | Credit | Lec | Tut (2) | App. Tut | Lab | Stud | Off Tut | Off. Hrs. | Total | | | | MTHS003 | Calculus 2 | 3 | 2 | 2 | D., | | | .:. | | 4 | | | N | EMCS002 | Engineering Mechanics - Statics | 2 | 1 | 2 | M | П | 52 | SII | | 3 | | | SEMESTER 2 | PHYS002 | Electricity and Magnetism | 3 | 2 | 0 | 2 | 1 | | | | 5 | | | E | MTHS005 | Introduction to Probability and Statistics | 3 | 2 | 2 | 0 | | | | | 4 | | | 巡 | MCNS101 | Thermodynamics | 3 | 2 | 2 | | | | | | 4 | | | | MDPS132 | Materials Science | 3 | 2 | | 2 | 1 | 9 | 1 | | 5 | | | S | MDPS001 | Fundamentals of Manufacturing
Engineering | 2 | 1 | | 1 | 2 | | | | 4 | | | | | Sub-Total | 19 | 12 | 8 | 5 | 4 | 0 | 0 | 0 | 28 | | Faculty of Engineering | | | | | | | Cor | itac | t Ho | urs | | | |----------|------------------|--|-----------------|-----|---------|---------|------|------|---------|--------|-------| | s | Code | Name | Credit
Hours | Lec | Tut (2) | App Tut | Lab | Stud | Off Tut | Off Hr | Total | | | MDPS261 | Stress Analysis | 3 | 2 | 2 | | | | | | 4 | | | MDPS217 | Machine Drawing | 3 | 1 | 2 | 0 | 2 | | 5 | | 5 | | 3 | MDPS241 | Manufacturing Processes I | 3 | 2 | | 1 | 2 | | ġ | | 5 | | H | MTHS102 | Linear Algebra and Multivariable Integrals | 3 | 2 | 2 | 0 | | | | | 4 | | SEMESTER | MTHS104 | Ordinary Differential Equations & Mathematical Equations | 3 | 2 | 2 | 0 | | | | | 4 | | E | GENS00X | E-0 | 2 | 2 | | | | | | | 2 | | 3500 | E-A
(GENS005) | Elective E-A (Writing and Presentation Skills) | 2 | 2 | | | | | | | 2 | | | |
Sub-Total | 19 | 13 | 10 | 1 | 2 | 0 | 0 | 0 | 26 | | | | | / | | | Cor | itac | t Ho | ours | 17 | | |------------|---------|-------------------------------------|--------|-----|---------|----------|------|------|---------|-----------|-------| | s | Code | Name | Credit | rec | Tut (2) | App. Tut | Lab | Stud | Off Tut | Off. Hrs. | Total | | | EPES201 | Electrical Engineering Fundamentals | 3 | 2 | | 3 | | | | | 5 | | 4 | MCNS202 | Fluid Mechanics | 3 | 2 | 2 | | C | | | | 4 | | ш | MDPS251 | Kinematics of Machine Components | 3 | 2 | O. | 3 | ΠT | 55 | 211 | m | 5 | | S | MDPS232 | Engineering Materials | 3 | 2 | 2 | | 01 | 00 | 010 | 711 | 4 | | ¥ | MTHS114 | Numerical Analysis | 3 | 2 | 2 | 0 | | | | | 4 | | SEMESTER 4 | MDPS242 | Manufacturing Processes II | 3 | 2 | | 2 | 1 | | | | 5 | | ٠, | MDES280 | | 1 | 1 | | | | | | | 1 | | | | Sub-Total | 19 | 13 | 6 | 8 | 1 | 0 | 0 | 0 | 28 | | | | | | | | Con | tac | t Ho | urs | | | |----------|-----------|---|-----------------|-----|---------|---------|-----|------|---------|--------|-------| | S | Code | Name | Credit
Hours | Lec | Tut (2) | App Tut | Lab | Stud | Off Tut | Off Hr | Total | | | MDPS352 | Machine Design | 3 | 2 | | 3 | | | | | 5 | | | MCNS326 | Heat Transfer | 3 | 2 | 2 | | | | (a | | 4 | | 3 | MDPS381 | Fundamentals of Industrial Engineering | 3 | 2 | | 3 | | | | | 5 | | Ē | MDPS355 | Dynamics of Machine Componen:s | 3 | 2 | | 3 | | | | | 5 | | S | EPES303 | Electric Drive Systems | 3 | 2 | | 3 | | | | | 5 | | SEMESTER | (GENS120) | Elective E-A (Fund. of Economics and Accounting) | 2 | 2 | | | | | | | 2 | | | | Elective E-A (Fundamental of
Management, Risk and Environment) | 2 | 2 | | | | | | | 2 | | | | Sub-Total | 19 | 14 | 2 | 12 | 0 | 0 | 0 | 0 | 28 | | | 0. | | | / | | Cor | tac | t Ho | ours | | | |----------|---------|---------------------------|--------|-----|---------|----------|-----|------|---------|-----------|-------| | s | Code | Name | Credit | Lec | Tut (2) | App. Tut | Lab | Stud | Off Tut | Off. Hrs. | Total | | | MDPS372 | Control System Dynamics | 3 | 2 | | 2 | 1 | | | | 5 | | 3 6 | MDPS354 | Machine and System Design | 4 | 2 | 4 | | | | | | 6 | | Ü | MDPS371 | Mechanical Vibrations | 3 | 2 | 2 | - | - | | 19 | | 4 | | S | MDPS363 | Finite Element Analysis | 130 | 2 | (2 | Pr | nt | 20 | 011 | nn | 4 | | M | MDPS370 | Mechanics of Solids | 3 | 2 | 2 | 0 1 | VI | 00 | OIC | 711 | 4 | | SEMESTER | xxxsxxx | Program Elective 1 | 3 | 2 | 2 | | | | | | 4 | | | | Sub-Total | 19 | 12 | 12 | 2 | 1 | 0 | 0 | 0 | 27 | du l | | | | | | | Con | tac | t Ho | urs |) | | |------------|---------|--|--------|-----|---------|---------|-----|------|---------|--------|-------| | s | Code | Name | Credit | Lec | Tut (2) | App Tut | Lab | Stud | Off Tut | Off Hr | Total | | | MDPS482 | Quality Management | 3 | 2 | 2 | | | | | | 4 | | SEMESTER 7 | MDPS332 | Computer Aided Design and
Manufacturing CAD/CAM | 3 | 2 | 2 | | | | | | 4 | | E | EPES305 | | 3 | 2 | 2 | | | | | | 4 | | ES | XXXSXXX | Program Elective 2 | 3 | 2 | 2 | | | | | | 4 | | Σ | XXXSXXX | | 3 | 2 | 2 | | | |) (| | 4 | | S | XXXSXXX | Program Elective 4 | 3 | 2 | 2 | | | | | | 4 | | | MDES481 | Graduation Project I | 1 | 0 | 2 | | | | | | 2 | | | | Sub-Total | 19 | 12 | 14 | 0 | 0 | 0 | 0 | 0 | 26 | | | | | | / | - | Cor | itac | t Ho | ours | | | |----------|---------|------------------------------|--------|-----|---------|----------|------|------|---------|-----------|-------| | s | Code | Name | Credit | rec | Tut (2) | App. Tut | Lab | Stud | Off Tut | Off. Hrs. | Total | | | GENS30X | E-1 | 2 | 2 | | | | | | | 2 | | 8 | MDPS410 | Mechanical Lab | 2 | 1 | | | 3 | | | | 4 | | SEMESTER | MDPS464 | Failure Analysis | 3 | 2 | 2 | | | | | | 4 | | S | XXXSXXX | Program Elective 5 | 130 | 2 | 2 | D_r | of | no | oic | m | 4 | | M | XXXSXXX | Program Elective 6 10 UI LII | 3 | 2 | 2 | | UI | CO. | 211 | 711 | 4 | | SE | XXXSXXX | Program Elective 7 | 3 | 2 | 2 | | | | | | 4 | | | MDES482 | Graduation Project II | 3 | 1 | 4 | | | | | | 5 | | | | Sub-Total | 19 | 12 | 12 | 0 | 3 | 0 | 0 | 0 | 27 | # COURSES CONTENTSتوصيف المقررات | | | Credit | | | (| Conta | ct Ho | urs | | | |-----------------------|--|--|--------------------|------------------------|----------------------------|--------------------|-----------------------|-----------------------|----------------------|----------| | Code | Name/Content | Hours | Lec | Tut
(2) | App.
Tut | Lab | Stud | Off.
Tut | Off.
Hrs. | Total | | Discipline | Courses (Compulsory) | 12. | | 1000 | | 10 | | | | 7 | | MTHS102 | Linear Algebra and | 3 | 2 | 2 | 0 | | | | | 4 | | | Multivariable Integrals | | | | | | | | | | | | Pre-requisites: MTHS003 | | | 10000 | | | | | | | | | Solving Linear Systems, Vect | | | | | | | | | | | | Orthonormal Bases, The Eige | | | | | | | | | | | | Functions of Matrices. Function | | | | | | | | | | | | and its Applications, Vector Fie | | | | | Doubl | e and | Triple | Integra | als with | | D - f | Applications, Line and Surface I | | | | | | Learnin | - | | | | References | Calculus Early Transcendentals", b Elementary Linear Algebra with Ap | Water and the second se | | | | | | - | | | | MTHS104 | Differential Equations | 3 | 2 | 2 | 0 | 11111, 201 | O, Fears | OH. | | 4 | | | Pre-requisites: MTHS003 | | | 5 | | | - | | | | | | equations; method of undetern
higher order differential equati
applications, shifting theorems
using Laplace transform; Fourier | ions; sei
, convol
r series; | ries s | olution
theore | ns; La
em; se
sform. | place
olution | transfo | rm; p | ropertie | es and | | \n | using capiace transform, Found | | | | | - | 100 | - | | | | References | 1- A First Course in Differential Equa | tions with I | Modelin | g Appl | by R N | 11th E | dition 20 | 17, by E | Dennis (| S. Zill | | References
MTHS114 | 1 A First Course in Differential Equal 2- "Fundamentals of Differential Equal Numerical Analysis | tions with tions", 9th | Modelin | g Appl
, 2017,
2 | by R. N | 11th E
lagle, E | dition 20
dward Sa | 17, by I
aff, Arth | Dennis C
ur Snide | S. Zill | | | 1 A First Course in Differential Equal 2- "Fundamentals of Differential Equal | tions", 9th | Modelir
Edition | , 2017, | by R. N | 11th E
lagle, E | dition 20
dward Sa | 17, by I | Dennis C
ur Snide | G. Zill | | 7981 | | Crodit | | | (| Conta | ct Ho | urs | 0 | 98 | |-----------------------|--|--|---|---|---|--|--|----------------------------|--|---| | | Electrical Engineering 3 | Credit
Hours | Lec | Tut
(2) | App.
Tut | Lab | Stud | Off.
Tut | Off.
Hrs. | Total | | EPES201 | Fundamentals | 3 | 2 | 0 | 3 | | | | | 5 | | References
EPES303 |
Pre-requisites: PHYS002 Electrical elements and electrical elements and electrical divider rules, star-delta transfer voltages and Thevenin's theory (average and RMS values, voltand complex representations of factor correction). Three phase balanced loads, three phase pool A. R. Hambley, Electrical Engin Electric Drive Systems Pre-requisites: EPES201 Power Electronic Converters Inverters. DC Motor Drives: S Thyristor and Chopper DC Drives. | ormation) em). First age and f sine was e circuits wer). Tra eering: P | t orde currer eves, of (line a cansfor rinciple 2 cor Drand O | lysis or cap nt wav concep and pl mers es an 0 rives: | of DC
acitive
veform
ot of in
nase v
circuits
d Appl
3 | transis). Ana mpedar oltages. Cour ication | its (bra
ients. T
alysis o
nce, po
s, star a
rse proj
s, 7th e
Rectifie | f AC commended and decent. | urrents arying circuits halysis, elta con arson, 2 | yecto
yecto
powe
nected
2018. | | Deferences | Speed Control, Inverter-fed Dr
Characteristics, Drive Circuits. (
P. C. Sen, Principles of Electric | Course P | roject. | _ ir | 11 | | 22 | | 7 | | | MCNS101 | Thermodynamics | 3 | 2 | 2 | 0 | liornos | , 514 60 | ., ****** | y, 201 | 4 | | | Pre-requisites: PHYS001 | | | | | | | | | | | Sp | Basic concepts. Pure substanc
law of thermodynamics and course project | | _ | | | | | | - | | | References | Claus Borgnakke and Richard E
Wiley, 2019. | E. Sonnta | g, Fur | ndame | entals | of The | rmodyn | amics, | 10th E | dition, | | MCNS202 | Fluid Mechanics | 3 | 2 | 2 | 0 | | | | | 4 | | | Pre-requisites: MTHS002 | | | | | | | | | | | | Fluid kinematics. flow types. Into
momentum and Energy equati
modeling, Viscous flow in pip
Course project computer oriente | ons, App
es and | licatio | ns. S | imilitud | de and | dimen | sional | analys | sis and | | References | Philip M. Gerhart, Andrew L. Fundamentals of Fluid Mechani | Gerhart, | | | | | nson, Y | oung/ | and C |)kiishi': | | 1211 | | Crodit | | | (| Conta | ct Ho | urs | 8 | 03 | |-----------------------|--|--|--------------------------------------|------------------------------------|---|---------------------------------------|---|---|---|---------------------------------------| | | Name/Content | Credit
Hours | Lec | Tut
(2) | App.
Tut | Lab | Stud | Off.
Tut | Off.
Hrs. | Total | | MCNS326 | Heat Transfer | 3 | 2 | 2 | 0 | | | | | 4 | | | Pre-requisites: MCNS101 | | | | | | | | - | | | | Conduction: General equation of
state conduction with internal
conductivity, fins and extended
convection, dimensionless group
Radiation: Fundamentals of heat | heat ge
surfaces
s, natura | neration
unstell
and f | on, st
eady o
orced | eady
conduct
conve | conduction. Cotion, u | ction w
convectuse of e | ith varion: fur
ion: fur
impirica | riable
ndamer
al corre | thermantals of | | References | Frank P. Incropera, David P. DeWitt,
Mass Transfer, 6th Edition, John Wiley | | | man, A | Adrienn | e S. Lav | ine, Fu | ndamen | itals of I | Heat and | | MDPS001 | Fundamentals of Manufacturing
Engineering | 2 | 1 | 0 | 1 | 2 | | | | 4 | | | Pre-requisites: NONE | | | 1 | | | - 4 | | | | | References
MDPS132 | 3D printing Mikell P. Groover, Fundamentals of M Wiley, 2019. Materials Science | Modern Ma | nufactu
2 | uring: N | Materials | s, Proce | sses, ar | nd Syste | ems, 7th | Edition 5 | | MDDC400 | | 1 2 | 1 | 0.5 | I - 0 | - 4 | - 3 | | | T = | | WIDF 3 132 | Pre-requisites: NONE | | | U | - | | | | | J | | Sp | Introduction to materials enginestructures, crystal imperfect mechanisms and plastic deform cast iron, Phase transformation Metals, Mechanical testing of metals. | ions, D
ation, ph
ns and i
etals: ter | iffusio
ase di
sother
sion, | n, N
agran
mal h
compr | lechar
ns, Iron
leat tre
ression | nical
n carbo
eatmer
n, bend | propert
on phas
nts (TT
ling, to | ies,
se diag
T), Classion, f | Streng
ram, T
assifica
nardnes | thening
ypes of
ation of
ss. | | References | William D. Callister Jr., David G. Reth Wiley, 2018. | wisch, Mat | erials S | cience | and Er | ngineerii | ng: An Ir | troducti | on, 10th | Edition | | MDPS217 | Machine Drawing | 3 | 1 | 2 | 0 | 2 | | | | 5 | | | Pre-requisites: INTS001 | 7.50 | 37. V | 33773 | 7 - 3 | 2770 | | | | % et == | | Poforonose | Sketching and drafting of actor drawing, working drawing, tolerances, surface roughness devices, keys, splines, gears, riveting conventions. Standard aided graphics application. David A. Madsen, David P. Mac | limension
Standa
pulleys,
lization a | ning,
rd ma
beari
and de | limits
ichine
ngs,
esigna | , fits,
elem
pipe o
ation o | Georents (tents) | metrica
threads
tions, e
chine e | l and
s, faste
etc.) -
elemen | dime
eners,
Weldi
ts. Co | nsiona
locking
ng and
mpute | | References | Learning, 2016. | usen, E1 | girieen | ng Di | awing | and D | esign, | oui Ea | idon, C | engag | | | | Credit | | | (| onta | ct Ho | urs | 0 | | |-----------------------|---|--
--|---|---|---|--|------------------------------------|--|--| | Code | Name/Content | Hours | Lec | Tut
(2) | App.
Tut | Lab | Stud | Off.
Tut | Off.
Hrs. | Total | | MDPS232 | Engineering Materials | 3 | 2 | 2 | | | | | | 4 | | | Pre-requisites: MDPS132 | • | | | | | | | | | | | Heat treatments of steel, Class
copper and its alloys and alumin
Introduction to Composites, Intro | num and | its all | oys, A | ge ha | | | | | | | | William D. Callister Jr., David
Introduction, 10th Edition, Wiley | | thwisc | h, Ma | aterials | Scie | nce ar | nd Eng | gineeri | ng: Ar | | MDPS241 | Manufacturing Processes I | 3 | 2 | 1 | 2 | | | | | 5 | | | Pre-requisites: PHYS001 | | | | 3) | | | | | | | | metrology - Gauges - Errors i | | | | | and an | gle me | asurin | g instr | uments | | References | test of geometrical shape: straig
Fundamentals of Machining and | htness a | nd flat | ness. | | the 1 | Ĭ | | | | | | test of geometrical shape: straig
Fundamentals of Machining and
Francis Inc | htness a
d Machir | nd flat
ne Too | ness.
ols, Go | eoffrey | the 1 | Ĭ | | | aylor 8 | | References
MDPS242 | test of geometrical shape: straig
Fundamentals of Machining and | htness a | nd flat | ness. | | Booth | Ĭ | | | | | | rundamentals of Machining and Francis Inc Manufacturing Processes II Pre-requisites: MDPS132 Casting: Types of foundries, st allowances of patterns; Moldin defects. Forming: Metal forming process yield criterion; slip line fields; e bulk and sheet metal forming p types of metal forming dies; prin Welding: Welding processes; w coatings; weldability and welding | eps in many processes classification or cesses ciples of vertical processes of proc | nd flat
ne Too
2
naking
esses
cation,
n of fo
s; pred
powd
nergy | a cas
and basic
brice a
sision
er form | sting; omaterial and ening. Des and | Booth als; ga I worki ergy re g proc d their lloys; re | etals; to the tall of | ypes, nd rise cepts lents; feature | materia
ering;
and pla
technoles of d | aylor 8 als and casting asticity alogy of the casting the casting asticity alogy of as a state of the casting asticity as a state of the casting stat | | MDPS242 | Fundamentals of Machining and Francis Inc Manufacturing Processes II Pre-requisites: MDPS132 Casting: Types of foundries, stallowances of patterns; Moldin defects. Forming: Metal forming process yield criterion; slip line fields; expected bulk and sheet metal forming process yield criterion; slip line fields; expected bulk and sheet metal forming process yield criterion; slip line fields; expected bulk and sheet metal forming processes; welding: Welding processes; welding: welded joints; weld testing and | eps in many processes classific estimation rocesses ciples of vertile dinspections and inspections and inspections are consistent and inspections and inspections and inspections are consistent cons | nd flatine Too 2 naking esses cation, of for powd nergy ous making now mition. Commender to the commend of th | a case and basic orce a sision er form source tetals course | eoffrey sting; of material material material modern formin ming. ees and all e project | Booth 1 cast mals; ga I working proceuted their lloys; rect. | etals; to the tall ting and ti | ypes, nd rise cepts lents; feature | materia
ering;
and platechno
es of d | aylor 8 als and casting asticity ology olifferen and see | Faculty of Engineering | right - | | Credit | | | (| onta | ct Ho | urs | 0 | 88 |
--|--|--|---------------------------------------|-----------------------------------|--------------------------------------|--------------------------------------|---|--|--|---------------------------------------| | Code | Name/Content | Hours | Lec | Tut
(2) | App.
Tut | Lab | Stud | Off.
Tut | Off.
Hrs. | Total | | MDPS251 | Kinematics of Machine
Components
Pre-requisites: EMCS001 | 3 | 2 | 2/2/0 | 3 | | | | | 5 | | | Kinematics fundamentals: ge components, indexing mechan velocity and acceleration), Cam and equivalent mechanisms, Geometry and assembly conditional Software and case studies, Courties Studies Ca | nisms, in
a-follower
Gear train
tions, Si
irse proje | nkage
mech
ns (sin
mulati | mec
nanisn
nple,
on us | hanisn
ns: de:
compo
sing C | ns and
sign ar
ound a
omput | d plana
nd anal
nd pla | ar robo
ysis, s
netary | ots: (p
tandar
): Kine | d cams | | The second secon | R.L. Norton, Design of Machine | ry, 6th ed | d. McG | | Hill, 20 | 19. | | | | 200 | | MDPS261 | Stress Analysis | 3 | 2 | 2 | | | | | 8 | 4 | | | Pre-requisites: EMCS002 | | | | | | | 1 | | 771 | | | combined bending and torsion
shear stress, allowable stresses
thin-walled vessels, springs, loa
oriented. | s, Mohr's | circle | repre | esentat | ion. A | oplication | on to s | imple t | frames | | References | Russell C. Hibbeler, Mechanics | of Mater | ials in | SI Ur | nits, 10 | th editi | on, Pea | arson, | 2018. | | | MDPS352 | Machine Design | 3 | 2 | 0 | 3 | | | | | 5 | | Sn | Pre-requisites: MDPS261 | nt I- | noi | ne | erir | 10' - | rnt | 229 | inn | | | Op | Design procedures – Factors a loading – Safety factors and a various design calculations. Interest detachable joints: (threaded j (welding, interference fitting, rivelements: springs, power screw project. | allowab e
erpretato
oints, ke
eting, rive | stres
on and
eys ar
eting, r | ses -
usag
nd sp
rivetin | - Desige of colines) lig, adh | gn va
ompon
– De
esion) | riants a
ent dat
sign o
– Desi | and in
ta shee
f pern
gn of s | versior
ets. De
nanent
some m | s. The
sign of
joints
achine | | References | Richard Budynas, Keith Nisbett,
McGraw Hill, 2014. | Shigley' | s Mec | hanic | al Eng | ineerin | g Desig | gn, 10t | h Editi | on, | | t part | | Credit | | 9 / | (| Conta | ct Ho | urs | 0 | es . | |-----------------|--
--|-----------------------------|-------------------|--------------------------|--|--|-------------|--------------|----------| | Code | Name/Content | Hours | Lec | Tut
(2) | App.
Tut | Lab | Stud | Off.
Tut | Off.
Hrs. | Total | | MDPS354 | Machine and System Design | 3 | 2 | 4 | | | | | | 6 | | 200-em 1-0-25-0 | Pre-requisites: MDPS352 + MDI | PS355 | | | | | | | | | | | Design of Power transmission e | elements | , Shaf | t desi | gn, Be | aring o | design | and Se | election | , Gear | | | design (spur, helical and bevel | gears), § | Sprock | et an | d chai | n desiç | n, Belt | s and | Pulley, | Brake | | | Design, Clutch design. | | | | | 8 | | | 2000 | | | | Course Project is a major activit | The state of s | | | | | | | | | | | project students in small group | Committee of the second second | Carried Street, Contract of | | - | Control of the Contro | | | | | | | machines and components an
mechanical modules. These will | TO THE REAL PROPERTY AND ADDRESS OF THE PARTY | | | CONTRACTOR OF THE PARTY. | 2000 (NO.00) | | | - | | | | accuracy level commensurate | | | | | | | | | | | | constructed and assessed as to | | | | | | | | | | | | The evaluation of the project w | | form | of a p | resen | tation I | by each | group | p befor | e their | | | fellow students and the instructor | | | | = | | | | 1011 | | | References | Richard Budynas, Keith Nisbet
McGraw Hill, 2014. | t, Shigle | y's M | echan | iical E | nginee | ring D | esign, | 10th | dition, | | MDPS355 | Dynamics of Machine | 3 | 2 | | 3 | | | | | 5 | | IIIDI Occo | Components | | _ | - | | | | | | " | | | Pre-requisites: MDPS251 | | | in | TT . | | _ | _ | 7 | | | | Dynamics fundamentals and ba | asic con | cepts, | Plane | e Kine | tics of | Rigid | bodies | : force | -mass- | | | acceleration, work and energy, | virtual v | vork, b | aland | ing of | machi | nery: r | otating | eleme | ents, 4- | | | bar linkage, reciprocating eleme | | | The second second | | | The second secon | | | 100 mm | | 0- | Flywheel design and turning n | | _ | | | 100000000000000000000000000000000000000 | | | | | | 2b | engines, W-engines, Simulation
studies, Course project | using C | omput | er Gr | aphics | and M | IATLAE | 3 Softw | vare an | d case | | References | R.L. Norton, Design of Machiner | ry, 6th ed | d. McG | raw F | Hill, 20 | 19. | | | | | | MDPS371 | Mechanical Vibrations | 3 | 2 | 2 | | | | | | 4 | | | Pre-requisites: MDPS355 | | | | | | | | | | | | Introduction and basic concer | ots, sou | rces a | and c | auses | of vi | bration | s, free | and | forced | | | vibrations of SDOF systems, vi | | | | | | | | | | | | vibrations of 2DOF systems, vi | | | | | * | | | | | | | normal modes, forced vibrat | | | n me | easure | ment | metho | ds, co | mpute | r-aided | | Doforonoco | simulation and case studies, cou | | | roon | 2047 | | | | | | | References | S. S. Rao, Mechanical Vibration | s, oth eq | ., Pea | rson, | 2017. | | | | | | | Page 1 | | Credit | | | (| onta | ct Ho | ırs | 0 | 41 | |------------|---|------------|---------|------------|-------------|------|-------|-------------|--------------|-------| | Code | Name/Content | Hours | Lec | Tut
(2) | App.
Tut | Lab | Stud | Off.
Tut | Off.
Hrs. | Total | | MDPS372 | Control System Dynamics | 3 | 2 | 0 | 2 | 1 | | | | 5 | | | Pre-requisites: MDPS355 | | | | - | | | | | • | | | Introduction to system dynamic electrical, electronic, hydraulic, | | | | | | | | | | | | space approach; Time-domain
analysis - Root locus; Frequ | uency-dor | main | analy | sis- E | | | | | | | | Computer simulation and case | | | | | | | | | | | References | K. Ogata, Modern Control Engir | neering, 5 | th ed., | Pear | son, 2 | 010. | | | | | | Program | Courses (Compulsory) | | | | - |
Conta | ct Ho | irs | | | |------------|--|--|--|--|--|-----------------|-----------------------|-------------|----------------------------|-------------------------------------| | Code | Name/Content | Credit
Hours | Lec | Tut
(2) | | Lab | Stud | Off.
Tut | Off.
Hrs. | Total | | EPES305 | Industrial Instrumentation | 3 | 2 | 2 | 0 | 0 | | | | 4 | | | Pre-requisites: EPES303 | | | | / | | | | / | | | | | | | | | | | | | | | References | conditioning: signal analysis,
acquisition systems (A/D and D
programming, applications. Cou
William Dunn, Fundamentals of |)/A conve | erters) | Step | per m | otors: | micropi | rocess | ors: st | ructure | | 0 | acquisition systems (A/D and D |)/A conve | erters) | Step | per m | otors: | micropi | rocess | ors: st | ructure | | References | acquisition systems (A/D and D programming, applications. Cou William Dunn, Fundamentals of |)/A conve | erters) | Step | per m | otors: | micropi | rocess | ors: st | ructure | | 0 | acquisition systems (A/D and D programming, applications. Cou William Dunn, Fundamentals of McGraw Hill, 2018. Mechanics of Solids Pre-requisites: MDPS261 | 0/A conve
irse pro e
Industria | erters)
ect.
I Instru
2 | Step
umen
2 | tation
0 | otors: | micropi | Control | ors: str | ructure
dition,
4 | | 0 | acquisition systems (A/D and D programming, applications. Cou William Dunn, Fundamentals of McGraw Hill, 2018. Mechanics of Solids | O/A converge process of the co | erters) ect. Instru ed pre esticity lar coo | Step
2
essure
, Sta
ordina | oper montation over set to set to the | els, She stress | ear stress and Thick- | city, Y | n non-
Strest spherical | dition, 4 circula s-strain res and | | MDPS332 Computer Aided Design and Manufacturing CAD/CAM Regregations of Design and Manufacturing CAD/CAM Regregations and CAD/CAM, Programming for lathe, drilling and milling machines, canned cycles, subroutines, Do Loops, Computer assisted part programming, DN CNC, Adaptive control. Industrial robotics: Robot physical configurations, robot motions, accurate repeatability, end effecter, sensors, robot programming, robot languages. Group Technology: pfamilies, part classifications and coding systems, group technology machine, cell, concepts composite part, benefits and limitations. Computer aided process planning: Retrieval type proces planning systems, generative process planning systems, machinability data systems, compute generated time standard. Computer Integrated Manufacturing: Types of manufacturing systems types of CIMS, special manufacturing systems, Flexible Manufacturing Systems FMS, Manufacturing Cells, Course project. References Sheet Metal Forming Fundamentals, Taylan Altan & Erman Takkaya, 2012, ASM International. MDPS363 Finite Element Analysis 3 2 2 0 0 0 4 4 Pre-requisites: MDPS261 Basic principles of continuum mechanics and finite element methods, modern application solution of practical problems in solid, structural, and fluid mechanics, heat and ma transfer, and other field problems. Kinematics of deformation, strain and stress measure constitutive relations, conservation laws, virtual work, and variational principle Discretization of governing equations using finite element methods. Solution of cent problems using an existing general-purpose finite element methods. Solution of cent problems using an existing general-purpose finite element analysis program, Cour project. References Nam-Ho Kim, Bhavani V, Sankar, Ashok V, Kumar, Introduction to Finite Element Analysis and Design, 2nd Edition, Wiley, 2018. | Page Control | | Credit | | | (| Conta | ct Ho | urs | 0 | | |--|--------------|---
--|---------------------------------------|---|--|--|---|--|--|--------------------------------------| | MDPS332 Computer Aided Design and Manufacturing CAD/CAM Pre-requisites: MDPS241 Product Cycle and CAD/CAM, Automation and CAD/CAM, Programming for lathe, drilling and milling machines, canned cycles, subroutines, Do Loops, Computer assisted part programming, DN CNC, Adaptive control. Industrial robotics: Robot physical configurations, robot motions, accural repeatability, end effecter, sensors, robot programming, robot languages. Group Technology: p families, part classifications and coding systems, group technology machine, cell, concepts composite part, benefits and limitations. Computer aided process planning: Retrieval type proce planning systems, generative process planning systems, machinability data systems, computer process planning systems, planning, planning systems, planning, planning systems, planning, planning and control, and substanting systems, planning systems, planning systems, planning systems, planning systems, planning, plann | Code | Name/Content | No control de la | Lec | 0.0000000000000000000000000000000000000 | | Lab | Stud | 1275-2713 Cc. | | Total | | Pre-requisites: MDPS241 Product Cycle and CAD/CAM, Automation and CAD/CAM, Programming for lathe, drilling and millimachines, canned cycles, subroutines, Do Loops, Computer assisted part programming, DN CNC, Adaptive control. Industrial robotics: Robot physical configurations, robot motions, accurar repeatability, end effecter, sensors, robot programming, robot languages. Group Technology: p families, part classifications and coding systems, group technology machine, cell, concepts composite part, benefits and limitations. Computer aided process planning: Retrieval type proce planning systems, generative process planning systems, machinability data systems, compugenerated time standard. Computer Integrated Manufacturing: Types of manufacturing system types of CIMS, special manufacturing systems, Flexible Manufacturing Systems FMS, Manufacturing Cells, Course project. References Sheet Metal Forming Fundamentals, Taylan Altan & Erman Takkaya, 2012, ASM International. MDPS363 Finite Element Analysis 3 2 2 0 0 0 4 4 Pre-requisites: MDPS261 Basic principles of continuum mechanics and finite element methods, modern application solution of practical problems. Kinematics of deformation, strain and stress measure constitutive relations, conservation laws, virtual work, and variational principle Discretization of governing equations using finite element methods. Solution of cent problems using an existing general-purpose finite element analysis program, Cour project. References Nam-Ho Kim, Bhavani V. Sankar, Ashok V. Kumar, Introduction to Finite Element Analysis and Design, 2nd Edition, Wiley, 2018. MDPS381 Fundamentals of Industrial Fundamentals of Industrial Fundamentals of Industrial Fundamentals of Industrial and service industrial engineering, covering the bas concepts, principles, and tools used by industrial engineers to improve productivity, efficiency, and quality in manufacturing and service industrial. Element production planning and control, and quality control. The course also covers the history | MDPS332 | Computer Aided Design and | 3 | 2 | | 0 | 0 | | | | 4 | | Product Cycle and CAD/CAM, Automation and CAD/CAM, Programming for lathe, drilling and milli machines, canned cycles, subroutines, Do Loops, Computer assisted part programming, DN CNC, Adaptive control. Industrial robotics: Robot physical configurations, robot motions, accurar repeatability, end effecter, sensors, robot programming, robot languages. Group Technology: p families, part classifications and coding systems, group technology machine, cell, concepts composite part, benefits and limitations. Computer aided process planning: Retrieval type proce planning systems, generative process planning systems, machinability data systems, computer aided process planning: Retrieval type proce planning systems, generative process planning systems, machinability data systems, computer integrated Manufacturing: Types of manufacturing system types of CIMS, special manufacturing systems, Flexible Manufacturing Systems FMS, Manufacturing Systems of CIMS, special manufacturing systems, Flexible Manufacturing Systems FMS, Manufacturing systems process. MDPS363 Finite Element Analysis 3 2 2 0 0 0 4 4 Pre-requisites: MDPS261 Basic principles of continuum mechanics and finite element methods, modern application solution of practical problems in solid, structural, and fluid mechanics, heat and materialser, and other field problems. Kinematics of deformation, strain and stress measure constitutive relations, conservation laws, virtual work, and variational principle. Discretization of governing equations using finite element methods. Solution of cent problems using an existing general-purpose finite element methods. Solution of cent problems using an existing general-purpose finite element methods. Solution of cent problems using an existing general-purpose finite element methods. Solution of cent problems using an existing general-purpose finite element methods. Solution of cent problems using an existing general-purpose finite element methods. Solution of cent problems using an existing general-purpose finite element methods | | Manufacturing CAD/CAM | 2000 | A TOO | | 120 | | | | | | | machines, canned cycles, subroutines, Do Loops, Computer assisted part programming, DN CNC, Adaptive control. Industrial robotics: Robot physical configurations, robot motions, accurar repeatability, end effecter, sensors, robot programming, robot languages. Group Technology: p families, part classifications and coding systems, group technology machine, cell, concepts composite part, benefits and limitations. Computer aided process planning: Retrieval type proces planning systems, generative process planning systems, accurate time standard. Computer Integrated Manufacturing: Types of manufacturing system types of CIMS, special manufacturing systems, Elexible Manufacturing Systems FMS, Manufacturing cells, Course project. References Sheet Metal Forming Fundamentals, Taylan Altan & Erman Takkaya, 2012, ASM International. Finite Element Analysis Pre-requisites: MDPS261 Basic principles of continuum mechanics and finite element methods, modern application solution of practical problems in solid, structural, and fluid mechanics, heat and maternaster, and other field problems. Kinematics of deformation, strain and stress measure constitutive relations, conservation laws, virtual work, and variational principle Discretization of governing equations using finite element methods. Solution of cent problems using an existing general-purpose finite element methods. Solution of cent problems using an existing general-purpose finite element methods. Solution of cent problems using an existing general-purpose finite element methods. Solution of cent problems using an existing general-purpose finite element methods. Solution of cent problems using an existing general-purpose finite element methods. Solution of cent problems using an existing general-purpose finite element methods. Solution of cent problems using an existing general-purpose finite element methods. Solution of cent problems and Design, 2nd Edition, Wiley, 2018. Fundamentals of Industrial 3 2 0 3 5 5 6 5 7 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 | | Pre-requisites: MDPS241 | | | | | | | | | | | generated time standard. Computer Integrated Manufacturing: Types of manufacturing system types of CIMS, special manufacturing systems, Flexible Manufacturing Systems FMS,
Manufacturing Cells, Course project. References Sheet Metal Forming Fundamentals, Taylan Altan & Erman Takkaya, 2012, ASM International. MDPS363 Finite Element Analysis 3 2 2 0 0 0 4 4 Pre-requisites: MDPS261 Basic principles of continuum mechanics and finite element methods, modern application solution of practical problems in solid, structural, and fluid mechanics, heat and ma transfer, and other field problems. Kinematics of deformation, strain and stress measure constitutive relations, conservation laws, virtual work, and variational principle Discretization of governing equations using finite element methods. Solution of cent problems using an existing general-purpose finite element analysis program, Cour project. References Nam-Ho Kim, Bhavani V. Sankar, Ashok V. Kumar, Introduction to Finite Element Analysis and Design, 2nd Edition, Wiley, 2018. MDPS381 Fundamentals of Industrial 3 2 0 3 5 5 Engineering Pre-requisites: None This course provides an introduction to the field of industrial engineering, covering the bas concepts, principles, and tools used by industrial engineers to improve productivity, efficiency, and quality in manufacturing and service industries. Topics covered include production systems design, work methods and measurement, production planning and control, and quality control. The course also covers the history and current state of the field as well as the various career opportunities available in industrial engineering. | | machines, canned cycles, subrouc CNC, Adaptive control. Industrial repeatability, end effecter, sensor families, part classifications and composite part, benefits and limits | utines, De
robotics:
s, robot p
coding s
ations. Co | Robot
program
systems
ompute | physic
nming
s, gro
er aide | omputer
cal con
, robot
up tec
ed proc | r assist
figuration
langua
hnology
ess pla | ted part
ons, rob
iges. Gr
machi
nning: F | progra
ot mot
oup Te
ne, ce
Retrieva | amming
ions, ac
echnolo
II, cond
al type | gy: pa
cepts of
proces | | References Sheet Metal Forming Fundamentals, Taylan Altan & Erman Takkaya, 2012, ASM International. MDPS363 Finite Element Analysis 3 2 2 0 0 0 4 Pre-requisites: MDPS261 Basic principles of continuum mechanics and finite element methods, modern application solution of practical problems in solid, structural, and fluid mechanics, heat and ma transfer, and other field problems. Kinematics of deformation, strain and stress measure constitutive relations, conservation laws, virtual work, and variational principle Discretization of governing equations using finite element methods. Solution of cent problems using an existing general-purpose finite element analysis program, Cour project. References Nam-Ho Kim, Bhavani V. Sankar, Ashok V. Kumar, Introduction to Finite Element Analysis and Design, 2nd Edition, Wiley, 2018. MDPS381 Fundamentals of Industrial 3 2 0 3 5 Engineering Pre-requisites: None This course provides an introduction to the field of industrial engineering, covering the bas concepts, principles, and tools used by industrial engineers to improve productivity, efficiency, and quality in manufacturing and service industries. Topics covered include production systems design, work methods and measurement, production planning and control, and quality control. The course also covers the history and current state of the field as well as the various career opportunities available in industrial engineering. | | generated time standard. Computypes of CIMS, special manufacture | ter Integr | rated N | Manufa | acturing | : Type | s of ma | anufact | uring s | ystems | | Pre-requisites: MDPS261 Basic principles of continuum mechanics and finite element methods, modern application solution of practical problems in solid, structural, and fluid mechanics, heat and ma transfer, and other field problems. Kinematics of deformation, strain and stress measure constitutive relations, conservation laws, virtual work, and variational principle Discretization of governing equations using finite element methods. Solution of cent problems using an existing general-purpose finite element analysis program, Cour project. References Nam-Ho Kim, Bhavani V. Sankar, Ashok V. Kumar, Introduction to Finite Element Analysis and Design, 2nd Edition, Wiley, 2018. MDPS381 Fundamentals of Industrial 3 2 0 3 5 Engineering Pre-requisites: None This course provides an introduction to the field of industrial engineering, covering the bas concepts, principles, and tools used by industrial engineers to improve productivity, efficiency, and quality in manufacturing and service industries. Topics covered include production systems design, work methods and measurement, production planning and control, and quality control. The course also covers the history and current state of the field as well as the various career opportunities available in industrial engineering. | References | Sheet Metal Forming Fundamer | ntals, Tay | ylan A | ltan & | Erma | Takk | aya, 20 | 12, AS | SM | | | Basic principles of continuum mechanics and finite element methods, modern application solution of practical problems in solid, structural, and fluid mechanics, heat and ma transfer, and other field problems. Kinematics of deformation, strain and stress measure constitutive relations, conservation laws, virtual work, and variational principle Discretization of governing equations using finite element methods. Solution of cent problems using an existing general-purpose finite element analysis program, Cour project. References Nam-Ho Kim, Bhavani V. Sankar, Ashok V. Kumar, Introduction to Finite Element Analysis and Design, 2nd Edition, Wiley, 2018. MDPS381 Fundamentals of Industrial 3 2 0 3 5 Engineering Pre-requisites: None This course provides an introduction to the field of industrial engineering, covering the bas concepts, principles, and tools used by industrial engineers to improve productivity, efficiency, and quality in manufacturing and service industries. Topics covered include production systems design, work methods and measurement, production planning and control, and quality control. The course also covers the history and current state of the field as well as the various career opportunities available in industrial engineering. | MDPS363 | Finite Element Analysis | 3 | 2 | 2 | 0 | 0 | | | | 4 | | Basic principles of continuum mechanics and finite element methods, modern application solution of practical problems in solid, structural, and fluid mechanics, heat and ma transfer, and other field problems. Kinematics of deformation, strain and stress measure constitutive relations, conservation laws, virtual work, and variational principle Discretization of governing equations using finite element methods. Solution of cent problems using an existing general-purpose finite element analysis program, Cour project. References Nam-Ho Kim, Bhavani V. Sankar, Ashok V. Kumar, Introduction to Finite Element Analysis and Design, 2nd Edition, Wiley, 2018. MDPS381 Fundamentals of Industrial 3 2 0 3 5 Engineering Pre-requisites: None This course provides an introduction to the field of industrial engineering, covering the bas concepts, principles, and tools used by industrial engineers to improve productivity, efficiency, and quality in manufacturing and service industries. Topics covered include production systems design, work methods and measurement, production planning and control, and quality control. The course also covers the history and current state of the field as well as the various career opportunities available in industrial engineering. | | Pre-requisites: MDPS261 | | | | / | | | | | | | and Design, 2nd Edition, Wiley, 2018. MDPS381 Fundamentals of Industrial 3 2 0 3 5 Engineering Pre-requisites: None This course provides an introduction to the field of industrial engineering, covering the bas concepts, principles, and tools used by industrial engineers to improve productivity, efficiency, and quality in manufacturing and service industries. Topics covered include production systems design, work methods and measurement, production planning and control, and quality control. The course also covers the history and current state of the field as well as the various career opportunities available in industrial engineering. | Cn | transfer, and other field probler constitutive relations, conser Discretization of governing equiproblems using an existing oproject. | ms. Kine
vation
uations
general-p | matics
laws,
using
urpos | of d
virtu
finite
e fini | eforma
al wo
eleme
te ele | ition, s
ork, a
ent me
ment | train ar
nd va
ethods.
analysi | nd stre | ss me
al prii
on of
gram, | asures
nciples
centra
Cours | | and Design, 2nd Edition, Wiley, 2018. MDPS381 Fundamentals of Industrial 3 2 0 3 5 Engineering Pre-requisites: None This course provides an introduction to the field of industrial engineering, covering the bas concepts, principles, and tools used by industrial engineers to improve productivity, efficiency, and quality in manufacturing and service industries. Topics covered include production systems design, work methods and measurement, production planning and control, and quality control. The course also covers the history and current state of the field as well as the various career opportunities available in industrial engineering. | References | | ar, Ashok | V. Ku | mar, | Introdu | ction t | o Finite | Elem | ent Ana | alysis | | Engineering Pre-requisites: None This course provides an introduction to the field of industrial engineering, covering the bas concepts, principles, and tools used by industrial engineers to improve productivity, efficiency, and quality in manufacturing and service industries. Topics covered include production systems design, work methods and measurement, production planning and control, and quality
control. The course also covers the history and current state of the field as well as the various career opportunities available in industrial engineering. | | and Design, 2nd Edition, Wiley, | 2018. | | | | .0 | | | | 255 | | Pre-requisites: None This course provides an introduction to the field of industrial engineering, covering the bas concepts, principles, and tools used by industrial engineers to improve productivity, efficiency, and quality in manufacturing and service industries. Topics covered include production systems design, work methods and measurement, production planning and control, and quality control. The course also covers the history and current state of the field as well as the various career opportunities available in industrial engineering. | MDPS381 | Fundamentals of Industrial | 3 | 2 | 0 | 3 | | | | | 5 | | This course provides an introduction to the field of industrial engineering, covering the bas concepts, principles, and tools used by industrial engineers to improve productivity, efficiency, and quality in manufacturing and service industries. Topics covered include production systems design, work methods and measurement, production planning and control, and quality control. The course also covers the history and current state of the field as well as the various career opportunities available in industrial engineering. | | | | | | | | | | | | | concepts, principles, and tools used by industrial engineers to improve productivity, efficiency, and quality in manufacturing and service industries. Topics covered include production systems design, work methods and measurement, production planning and control, and quality control. The course also covers the history and current state of the field as well as the various career opportunities available in industrial engineering. | | Pre-requisites: None | 15 70 | | | | | | | | | | efficiency, and quality in manufacturing and service industries. Topics covered include production systems design, work methods and measurement, production planning and control, and quality control. The course also covers the history and current state of the field as well as the various career opportunities available in industrial engineering. | | | | | | | _ | _ | | | basic | | production systems design, work methods and measurement, production planning and control, and quality control. The course also covers the history and current state of the field as well as the various career opportunities available in industrial engineering. | | | the state of s | | | _ | | Control of the second | | | | | control, and quality control. The course also covers the history and current state of the field as well as the various career opportunities available in industrial engineering. | | | | | | | | | | | | | as well as the various career opportunities available in industrial engineering. | e of the | e field | | | D-f | | | | | | | | | | | | 1,000 | | Credit | | | C | onta | ct Hou | ırs | 0 | 85 | |-------------------|---|---|----------------------------|----------------------|--------------------------------------|-------------------------------|---|---|-------------------------|-----------------------------| | Code | Name/Content | Hours | Lec | Tut
(2) | App.
Tut | Lab | Stud | Off.
Tut | Off.
Hrs. | Total | | MDPS410 | Mechanical Lab | 2 | 1 | 0 | 0 | 3 | | | | 4 | | | Pre-requisites: 108 CREDITS | N | | | | | | * | | | | | Introduction to experimentatio
acquisition, adjusting, plotting a | nd interp | retatio | on of t | test res | sults, e | extraction | on of re | eliabilit | y data | | | Experiments are oriented to 1 | | | | | | | | | | | | Metallurgy and Microstructure; | | | | | | | | | | | | submitted by students, a written examiners. | n exam i | n Mid- | -Term | and a | n Ora | Exam | by a | panel (| of bee | | References | sNot applicable | | | | | | | | | | | MDPS464 | Failure Analysis | 3 | 2 | 2 | 0 | 0 | | | | 4 | | The second second | Pre-requisites: MDPS261 + MD | PS232 | | | | | | | | | | | Functional and structural failure wear, fretting and corrosive we deformation, buckling, yielding collapse, fracture mechanics and detection of failures. Applications of course project. | ar. Design
plastic
d crack
lications | instati
propag
to so | inst voility, gation | vear. M
creep
. Dama
nechan | Modes
and cage-tolaical co | of bulk
reep re
lerant of
ompone | failure
upture
lesign.
ents. (| Incre
Identificase s | essive
menta
fication | | References | Russell C. Hibbeler, Mechanics | of Mater | ials in | SI Ur | its, 10 | th editi | on, Pea | arson, | 2018. | | | MDPS482 | Quality Management | 3 | 2 | 2 | 0 | | - | | | 4 | | | Pre-requisites: MTHS005 | | | | | | | | | 5.15 | | | Introduction to quality systems. and standards: six sigma and Is | SO. Ree | nginee | ering. | Statist | ical qu | ality co | ntrol: | control | charts | | Sp | for variables and attributes, proc
function deployment. Quality cir | | | | | | ce-san | npling (| olans. | Quality | Engineering | Program | Courses (Electives) | | | | | | | | | | |---------|-----------------------------------|--------|-----|------------|-------------|------|--------|-------------|--------------|------| | rogram | Courses (Electives) | Credit | | | C | onta | ct Hou | ırs | | | | Code | Name/Content | Hours | Lec | Tut
(2) | App.
Tut | Lab | Stud | Off.
Tut | Off.
Hrs. | Tota | | PES450 | Programmable Logic
Controllers | 3 | 2 | 2 | 0 | 0 | | | | 4 | | | D EDEOOOO | 517 | | | | | | | | | Pre-requisites: EPES303 Selecting a proper PLC configuration for a given application. Hardware structure and wiring techniques. Basics of programming (bit and word programming, analogue values processing). Programming sequential control tasks. Structured programming techniques. Networking. Building simple supervisory control and data acquisition (SCADA) system integrated with a PLC for sequential control problems. Course project. References F. Petruzella, Programmable Logic Controllers, 5th ed., McGraw Hill, 2016. MDPS323 Modern Manufacturing 3 2 2 0 0 4 Processes 4 Pre-requisites: MDPS241 + MDPS242 Gear and thread manufacturing; non-conventional metal cutting; Electro-chemical machining; Electro discharge machining; Laser beam machining; Electron beam machining; Water jet machining; Rapid Prototyping; micro system product; micro fabrication processes; Property enhancing of metals; cleaning and surface treatment; Coating and deposition processes; Thermal and mechanical coating; Processing of integrated circuit. References Mikell P. Groover, Fundamentals of Modern Manufacturing: Materials, Processes, and Systems, 7th Edition, Wiley, 2019 MDPS353 Mechanism Design 3 2 2 0 0 4 Pre-requisites: MDPS355 Introduction and basic concepts, Mechanisms and structures, Number synthesis, Paradoxes, Isomers, Linkage transformation, Intermittent motion, Inversion, Function path and motion generation Graphical synthesis of planar mechanisms: Two-position synthesis, Three-position synthesis, Quick-return mechanisms, Coupler curves, Analytical synthesis of planar mechanisms, Optimal planar mechanism synthesis, Analytical synthesis of simple toggles, Introduction to spatial mechanism synthesis, simulation using Computer Graphics and MATLAB Software and case studies. Course project References R.L. Norton, Design of Machinery, 6th ed. McGraw Hill, 2019. | Part - | | Credit | Ĵ., | | (| onta | ct Hou | ırs | | 001 | |------------|---|---------------------------------|-------------------------|-------------------|---------------------------|----------------------------|-------------------------------|----------------------------|--------------------------|----------------------------| | Code | Name/Content | Hours | Lec | Tut
(2) | App.
Tut | Lab | Stud | Off.
Tut | Off.
Hrs. | Tota | | MDPS382 | Engineering Economy and
Financial Management | 3 | 2 | 2 | 0 | 0 | | | | 4 | | | Pre-requisites: E-A (GENS120) | | | | | | | | | | | | principles of economics and
organizations, including time va
accounting, budgeting, risk man | lue of mo | oney, i | nvest | ment a | nalysi | s, cost | | | | | References | "Engineering Economic Analysis Eschenbach. | s" by Dor | ald G | New | nan, J | erome | P. Lave | elle, ar | nd Ted | G. | | MDPS383 | Operations Research I | 3 | 2 | | 2 | 1 | | | | 5 | | | Pre-requisites: MTHS102 | | | | | | | | | | | References | Graphical solution. The Simple and assignment problems. Integrated Frederick Hillier, Gerald Liebern | er and 3 | ioal pr | ogran | nming. | 命 | 50 0 | | M | | | MDPS390 | McGraw Hill, 2021. | 3 | 2 | 2 | 0 | 0 | | | | 4 | | WIDP 3390 | Project Management Pre-requisites: MDPS381 | 3 | 4 | 4 | U | U | | _ | | 4 | | C | Introduction to Project planning
Breakdown Structure, Respon
possibilities using the Critical Pa
Technique (PERT). Resource
schedule), Gantt Chart, Time of | sibility (
ath Metholeveling | Chart.
od (CF
and | Network) a alloca | ork d
nd the
ition, | iagram
Progra
Fime-c | n, Sche
am Eva
ost trac | edule
luation
de off | analys
and I
(Cras | is and
Reviev
hing a | | 20 | Computer applications with case | | | ne | erm | 10, 1 | 700 | ess | 100 | | | References | "A Guide to the Project Mana
Management Institute. | | | of Kr | nowled | ge (P | MBOK | Guide |)" by | Projec | | MDPS394 | Design of Experiments | 3 | 2 | 2 | | | |
| | 4 | | | Pre-requisites: MTHS005 | 01 (11) | (2) | | (A) | 9 | | 0) | ¥. | (0) | | | Principles of experimental design | | | | | | | | | | | | Greco-Latin square designs. | | | | | | | | | | | | surface methodology and robu
experiments. | | | *** 0000000000 | | | | analyz | ing in | dustria | | References | Design and Analysis of Experin | nents" by | Doug | las C | . Monte | omen | / | | | | | | | Credit | | | (| onta | ct Hou | ırs | | 99 | |---------|---|-----------|--------|----------------------------|-------------|---------------|----------|-------------|--------------|---------| | Code | Name/Content | Hours | Lec | Tut
(2) | App.
Tut | Lab | Stud | Off.
Tut | Off.
Hrs. | Total | | MDPS395 | Human Factors and | 3 | 2 | 2 | 0 | 0 | | | | 4 | | | Ergonomics | | | | 3,50 | | | | | - | | | Pre-requisites: MDPS281 | | | | | | | | | | | | This course covers the principle | | | | | | | | | | | | focus on designing products, | | | | | | | | | | | | comfortable for human use. T | | | | | | | | | | | | psychology, biomechanics, anti | | | | | | | | | | | - 40 | also covers the application of hi | | | nd er | gonom | ics in | various | indus | tries, s | such as | | | manufacturing, healthcare, and | | | | | | | | | | | | "Handbook of Human Factors and | | 1 | All Control of the Control | 1 | | | | | T | | MDPS396 | Work Design and Measurement | 3 | 2 | 2 | 0 | 0 | | | | 4 | | | Pre-requisites: MDPS381 | | | | | | | | | | | | This course covers the principle | | | | | of the second | | 100 | | | | | focus on designing products, | | | | | Europe S. | | | | 1.00 | | | comfortable for human use. T | | | | | | | | | | | | psychology, biomechanics, anti | | | | | | | | | | | | also covers the application of hi | | | nd er | gonom | ics in | various | indus | tries, s | uch as | | | manufacturing, healthcare, and | | | -1 | T.F. | | | | | | | | "Handbook of Human Factors ar | nd Ergon | | by C | _ | Salver | ndy | | | | | MDPS397 | Safety Engineering | 3 | 2 | 2 | 0 | 0 | | | | 4 | | | Pre-requisites: MDPS381 | | | | | | | | | | | | This course covers the princip | | | | | | | | | | | Cr | identifying and controlling haza | | | | | | | | | | | 3 | Topics include hazard analysis, | | | | | | | | | | | | investigation, and safety manage | | | | | | | | | | | | safety engineering in various | industr | ies, s | such | as m | anufac | cturing, | cons | truction | n, and | | | healthcare. | | | | | | | | | | | | "Safety Engineering: Principles | and Prac | tices" | | D. Ha | le | | | | | | MDPS398 | Material Handling Systems | 3 | 2 | 2 | 0 | 0 | | | | 4 | | | Pre-requisites: MDPS381 | | | | | | | | | | | | This course covers the principle | s and ted | chniqu | es of | materi | al han | dling sy | stems | , which | n focus | | | on the movement, storage, cont | rol, and | protec | tion o | of mate | rials in | variou | s indu | stries. | Topics | | | include material handling equi | pment, s | system | ns, ar | nd ope | eration | s; trans | sportat | ion sy | otomo | | | 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / | | | | | | | | | stems | | | storage systems; and control s | ystems. | The co | ourse | also o | covers | the ap | plicatio | 7.0 | | | | storage systems; and control sy
handling systems in various indu | | | | | | | | n of n | nateria | | | 100000000000000000000000000000000000000 | Credit | | | C | onta | ct Hou | ırs | | | |-----------------------|--|--|---|--|--|---|--|---|---|---| | Code | Name/Content | Hours | Lec | Tut
(2) | App.
Tut | Lab | Stud | Off.
Tut | Off.
Hrs. | Total | | MDPS399 | Product Development and
Innovation | 3 | 2 | 2 | 0 | 0 | | | | 4 | | | Pre-requisites: MDPS381 | | | | | | | | | | | | This course covers the theory a
emphasis on the industrial engir
process, creativity and ideation
manufacturability, prototyping a
the application of product devel
as consumer goods, electronics | neering of
technique
and testin
opment a | erspectors, co
g, and
and inn | ctive.
ncept
com | Topics
t devel
mercia
on prin | includ
opmer
alizatio | e the p
it and s
n. The | roduct
election
course | develon, des | opmer
sign fo
cover | | References | "Product Design and Developme | | | | | teven l | D. Eppi | naer. | | | | MDPS414 | Special Topics in Mechanical
Design | 3 | 2 | 2 | 0 | 0 | | | | 4 | | | Pre-requisites: 85 Credits+ AA A | Approval | 40 10 | | | _ | | | | ė. | | MDPS421 | mechanical engineers. Course p
Tribology | 3 | 2 | 2 | 0 | 0 | | | | 4 | | MDPS421 | | 0.700 | 2 | 2 | 0 | 0 | | | | 4 | | | Pre-requisites: 85 Credits+ AA A | | | L | Π | | 1000 | | | | | | Surface topography, Nature of sur
formation, Friction mechanism, N | | | | | | | | | | | | coatings and treatments, Wear | | | | | | | | | | | | Friction materials, Properties of | | | ALCOHOL: NO CONTRACTOR OF THE PARTY P | | CONTRACTOR - W | TOTAL CONTROL OF | | | | | | lubricants and coatings, Selection | | | | | | | | | . Soli | | | jublicants and coatings, objection | n of lubri | cant ty | /pes, | Plain b | pearing | lubrica | tion, F | Rolling | | | Sr | lubrication, Gear and chain lubric | ation, Se | lection | of be | earing t | ype ar | d form, | Selec | tion of | bearing
journa | | Sp | lubrication, Gear and chain lubric
bearing, Selection of thrust bearing | ation, Se | lection
ure-fed | of be | earing to | ype ar | d form,
Greas | Selec
e, wick | tion of | bearing
journa
drip-fe | | Sp | lubrication, Gear and chain lubric
bearing, Selection of thrust bearing
lubricated journal bearings, Dry rub | ation, Se
ng, Press
obing bear | lection
ure-fed
ings, P | of be
fluid
lain-th | film be
frust be | ype ar
earings
earings, | d form,
Greas
Profiled | Selec
e, wick
d-pad th | tion of
, and
hrust be | bearin
journa
drip-fe
earings | | Sp | lubrication, Gear and chain lubric
bearing, Selection of thrust beari
lubricated journal bearings, Dry rub
Tilting-pad thrust bearing, Plain be | ation, Se
ng, Press
bing bear
arings for | lection
ure-fed
ings, P
m and | of be
fluid
lain-th
install | film be
film be
hrust be
ation, N | ype ar
earings
earings,
dechan | d form,
Greas
Profiled
ical sea | Selec
e, wick
d-pad th
ls, Sele | tion of
, and
hrust be | bearin
journa
drip-fe
earings | | Sp | lubrication, Gear and chain lubric
bearing, Selection of thrust beari
lubricated journal bearings, Dry rub
Tilting-pad thrust bearing, Plain be
Wear-resistant parts, (material sele | cation, Seing, Pressiphing bear
arings fcreection), co | lection
ure-fed
ings, P
m and
urse pr | of be
fluid
lain-th
install
oject | film be
frust be
ation, N
and cor | ype ar
earings
earings,
lechan
nputer | d form,
Greas
Profiled
ical sea
applicat | Selecte,
wick
d-pad this, Selected | tion of
and
hrust be
ection o | bearin
journa
drip-fe
earings | | | lubrication, Gear and chain lubric
bearing, Selection of thrust beari
lubricated journal bearings, Dry rub
Tilting-pad thrust bearing, Plain be
Wear-resistant parts, (material sele
J. Craig, Introduction to Robotic | cation, Seing, Pressiphing bear
arings fcreection), co | ection
ure-fed
ings, P
m and
urse pr
nics ar | of be
fluid
lain-th
install
oject | film be
frust be
ation, N
and cor | ype ar
earings
earings,
lechan
nputer | d form,
Greas
Profiled
ical sea
applicat | Selecte, wick
d-pad this, Selected | tion of
and
hrust be
ection o | bearing
journa
drip-fe
earings
of seals | | References
MDPS423 | lubrication, Gear and chain lubric
bearing, Selection of thrust bearing
lubricated journal bearings, Dry rub
Tilting-pad thrust bearing, Plain be
Wear-resistant parts, (material selection
J. Craig, Introduction to Robotic
Robotics Engineering | ation, Se
ng, Press
bing bear
arings for
ection), co
s: Mecha | lection
ure-fed
ings, P
m and
urse pr | of be
fluid
lain-th
install
oject | film be
film be
nrust be
ation, M
and cor
ontrol, 4 | ype ar
earings
earings,
Mechan
mputer
4 th ed. | d form,
Greas
Profiled
ical sea
applicat | Selecte, wick
d-pad this, Selected | tion of
and
hrust be
ection o | bearin
journa
drip-fe
earings | | | lubrication, Gear and chain lubric
bearing, Selection of thrust bearing
lubricated journal bearings, Dry rub
Tilting-pad thrust bearing, Plain be
Wear-resistant parts, (material sele
J. Craig, Introduction to Robotic
Robotics Engineering
Pre-requisites: MDPS251 | ation, Se
ng, Press
bing bear
arings fcre
ection), co
s: Mecha | lection
ure-fed
ings, P
m and
urse pr
nics ar
2 | of be
fluid
lain-th
install
oject
and Co | film be
film be
nrust be
ation, N
and cor
ontrol, 4 | ype ar
earings
earings,
Mechan
mputer
4 th ed.
0 | d form,
Greas
Profiled
ical sea
applicat
Pearso | Selecte, wick
d-pad the
ls, Selections
n, 201 | tion of
the and the
prust be
ection of | bearing
journa
drip-fe
earings
of seals | | | lubrication, Gear and chain lubric bearing, Selection of thrust bearing lubricated journal bearings, Dry rub Tilting-pad thrust bearing, Plain be Wear-resistant parts, (material selection of J. Craig, Introduction to Robotic Robotics Engineering Pre-requisites: MDPS251 Introduction to Robotics Technology of planar robots, Kinematics of 3- | ation, Se
ng, Press
bing bear
arings for
ection), co
s: Mecha
3
gy, Robot
D robots | ure-fed
ings, P
m and
urse pr
nics ar
2
structu | of be
fluid
Plain-th
install
oject
and Co
2
ures a | earing to film be arrust be ation, Nand corrontrol, 4 0 and comenous | ype ar
earings
earings,
Mechan
nputer
4 th ed.
0 | d form,
Greas
Profiled
ical sea
applicat
Pearso
ts, Kine | Selecte, wick d-pad tills, Selections n, 201 matics n, Traje | and dy | bearing journa drip-fe earings f seals | | MDPS423 | lubrication, Gear and chain lubric
bearing, Selection of thrust beari
lubricated journal bearings, Dry rub
Tilting-pad thrust bearing, Plain be
Wear-resistant parts, (material sele
J. Craig, Introduction to Robotic
Robotics Engineering
Pre-requisites: MDPS251
Introduction to Robotics Technology | ation, Se ng, Press bing bear arings fcn ection), co s: Mecha gy, Robot or robots ter simulat | ure-fed
ings, P
m and
urse pr
nics ar
2
structu | of be
fluid
plain-th
install
oject
and Co
2
ures a
omoged
prace | earing to film be ation, Nand correction, 4 o and comenceus etical tra | ype ar
earings
Aechan
nputer
4 th ed.
0 | d form,
Greas
Profiled
ical sea
applicat
Pearso
ts, Kine
ormation
course p | Selecte, wickd-pad tills, Selectens n, 201 matics n, Traje roject | and dy | bearing journa drip-fe earings f seals | | R21 1 1 1 1 1 | | Cradit | | 416 | C | onta | ct Hou | ırs | | 981 | |---------------|--|--|---|-------------------------------------|--------------------------------|--|---------------------------------|-------------------------------|-------------------------------|-----------------| | Code | Name/Content | Credit
Hours | Lec | Tut
(2) | + | Lab | Stud | Off.
Tut | Off.
Hrs. | Tota | | MDPS432 | Pressure Vessels and Piping | 3 | 2 | 2 | 0 | 0 | | | | 4 | | | Pre-requisites: MDPS261 + M | 1DPS132 + | 85 Cre | edits+ | AA A | pprova | il | | | | | | Introduction to ASME Boiler, Pr
code series. Material selection.
for internal and external press
openings and nozzles. Fabricat
stress and flexibility analyses, d
general-purpose software packa | Basic princi
sure. Design
tion requirent
esign and se | iples in
of en
nents.
election | design
d clo
Non-c
n of pi | n. Typo
sures v
destruct | es of lowith various examples of the example | ads. Fa
rious ge
aminatio | ilure the
cometri
n and | eories.
ies. De
testing | Design of Pipin | | References | | 0 | | | _ | | | | - | | | MDPS442 | Advanced Finite Elem
Analysis | nent 3 | 2 | 2 | | | | | | 4 | | | Pre-requisites: MDPS363 + 8 | 5 Credits+ | AA Ap | prova | al . | | | | | | | References | | of fundame
se project | ntal pro | oblem | is using | g an e | xisting g | eneral | -purpos | se finite | | | Edition, Wiley, 2018. | | | 1 | | | | - | 7 | | | MDPS444 | Sheet Metal Processing | 3 | 2 | 0 | 2 | 1 | | | | 5 | | | Pre-requisites: MDPS242 | 14 | 01 | | | 4.5 | | | | | | Sp | Review of Sheet metal industry
Simple Stamping Analysis, Dec
Conventional Sheet metal proce
Mechanical and Hydraulic Press | ep Drawing
esses. Die d | Die de
esign: | esign,
Stand | Sheet
ard par | metal
ts, pro | shearing
gressive | g and co | bending | g, Non | | References | References Sheet Metal Forn | ning Funda m | nentals, | Tayla | an Altar | a & Erm | nan Taki | kaya, 2 | 012, A | SM | | MDDCAEZ | International. | | | | | | _ | | _ | | | MDPS457 | Fluid Power Systems | 3 | 2 | 2 | 0 | 0 | | | | 4 | | | Pre-requisites: MCNS202 + N | | | -1 | Dranar | tion of | buden | lia flui | da F | Donitis a | | | Fluid power transmission; ac
displacement pumps and me | | | | | | | | | | | | geometric volume units, flow | | | | | | | | | | | | directional control valves; dire | | | | | | | | | | | | spools, static characteristics | throttling systems -Basics of | | | ower | syster | ms an | d exam | ples fr | rom in | dustria | | | and mobile applications – Col
M. G. Rabie, Fluid Power Engine | urse project | t. | 2-12-32-43 | 0.500.0000 | ms an | d exam | ples fr | rom in | dustria | | K 10 10 10 10 10 10 10 10 10 10 10 10 10 | | Credit | | | C | onta | ct Hou | ırs | 0 | | |--|---|---|--|--------------------------------------
--|---|------------------------------|---------------------------|----------------------------|---------------------------------| | Code | Name/Content | Hours | Lec | Tut
(2) | App.
Tut | Lab | Stud | Off.
Tut | Off.
Hrs. | Total | | MDPS458 | Hydraulic Servo Control | 3 | 2 | 2 | 0 | | | | | 4 | | | Pre-requisites: MDPS457 + MDI | PS473 | | | | | • | | | | | | Fields of applications of hyd
proportional systems and elect
characteristics, valves coefficie
forces acting on spools and flap
Dynamic characteristics of serv
hydraulic servo systems; loop ga | ric servo
nts, lapp
pers – l
vo valves | o system
oing co
oilot op
o and | ems -
ondition
oerate
fluid | Hydrons – ed servines – | raulic :
Transi
ro valv
- Hydr | servo vent and es and o mech | alves;
d stea
types | types
dy sta
of feed | , station
te flow
lback - | | References | M. G. Rabie, Fluid Power Engine | eering, V | IcGra w | / Hill, | 2009. | | | | | | | MDPS473 | Automatic Control I | 3 | 2 | 2 | 0 | | | | | 4 | | | Pre-requisites: MDPS372 | | | | | | | | | | | References
MDPS474 | and Tuning. Computer simulatio K. Ogata, Modern Control Engin Automatic Control II Pre-requisites: MDPS473 | | | | | and the second | | | | 4 | | | Linear control systems analysis
Observability; Linear control sy
Observers – Linear quadratic r
project. | egulator | lesign
s. Con | in S
npute | tate S
r simu | pace -
lation | - Pole | place | ment - | - State | | THE R. P. LEWIS CO., LANSING, MICH. | K. Ogata, Modern Control Engin | eering, 5 | ed., | Pear | son, 20 | 010. | | _ | - | | | MDPS477 | Micro and Nano-
Electromechanical Systems | Of L | ngi | ne | erir | lg" | rot | 622 | lon | 4 | | | Pre-requisites: MDPS372 | 1 | | | | | | | | • | | | Introduction to Micro and Nan
MEMS/NEMS; Fabrication of
MEMS/NEMS: Electrostatic –
Computer Simulations and Cour | MEMS/I
Piezores | NEMS
sistive | Pri | nciples | of s | ensing | and | actua | tion in | | References | Sergey Edward Lyshevski, Nanc
Nano- and Microengineering, Se | o- and Mi | cro-El | | | | systems | : Fund | damen | tals of | | Vehicle System Dynamics and Control Pre-requisites: MDPS372 Introduction – vehicle body motion | Credit
Hours
3 | Lec
2 | Tut (2) | App.
Tut | Lab | | | | | |--|---|---|--|---|---|---|--|---
---| | Control Pre-requisites: MDPS372 Introduction – vehicle body motion | 550 | 2 | | 0 | | Stud | Off.
Tut | Off.
Hrs. | Total | | Introduction - vehicle body motion | | | | " | 0 | | | | 4 | | | | | | | | | | | | | passenger cars – vehicle stability -
Electric Vehicles and Electric Vehicles | Simulatio | n of mo | otion o | | | | | | | | Dean Karnopp, Vehicle Dynamic | s, Stab li | ty, and | d Con | trol, 2r | nd Edit | ion, CR | C Pres | ss, 201 | 13. | | Production and Operations Management | 3 | 2 | 2 | 0 | 0 | | | | 4 | | Pre-requisites: MDPS381 | - | | | | - 4 | | | | | | Requirements Planning (MRP). S
production. Introduction to Enterp
planning. | schedulin
orise Red | g. Sup
quirem | ply-C
ent P | hain m
lanning | anage
(ERP | ment. J
). Capa | ust-in-tacity a | time ar | gregate | | Khojasteh Yacob, Production Mana
2017. | gement: / | Advanc | ed Mo | odels, T | ools, a | nd Appli | cations | s, CRC | Press, | | Design for Manufacturing | 3 | 2 | 2= | 0 | 0 | | - 4 | | 4 | | | | | - ' | | | | | 7 | | | effective manufacturing. Topics in
such as casting, forming, machi
selection, geometric tolerancing, a
computer-aided design (CAD) an
design and production process. | iclude de
ning, and
and desig
d compu | sign go
d asse
n for s
ter-aid | uidelir
embly,
ustain
ed m | nes for
, as w
nability.
anufact | variou
ell as
The co
turing (| s manu
conside
ourse al | facturii
erations
so cov | ng prod
s for n
ers the | cesses,
naterial
use of | | | ndbook' | by Jar | nes G | Brall | a. | gr) | | | 255 | | Computer Integrated | 3 | 2 | 2 | 0 | 0 | | | | 4 | | Manufacturing CIM | | | | | | | | | | | Pre-requisites: MDPS381 + MDF | PS242 | | | | | - / V | | | | | i to requience. Inbr coot . Inbr | | | 22:011 | o provi | des ar | overvi | ew of
ers the | the pri | ncinles | | | Production and Operations Management Pre-requisites: MDPS381 Basic concepts of Production and Services. Processes and tech Requirements Planning (MRP). Services of Production to Enterplanning. Schojasteh Yacob, Production Mana 2017. Design for Manufacturing Pre-requisites: MDPS381 + MDF This course covers the principles effective manufacturing. Topics in such as casting, forming, machiselection, geometric tolerancing, a computer-aided design (CAD) and design and production process. Toesign for Manufacturability Hall Computer Integrated Manufacturing CIM | Dean Karnopp, Vehicle Dynamics, Stabilic Production and Operations Management Pre-requisites: MDPS381 Basic concepts of Production and Operaservices. Processes and technologies Requirements Planning (MRP). Scheduling production. Introduction to Enterprise Recollanning. Khojasteh Yacob, Production Management: A2017. Design for Manufacturing 3 Pre-requisites: MDPS381 + MDPS242 This course covers the principles and preeffective manufacturing. Topics include desuch as casting, forming, machining, and selection, geometric tolerancing, and design computer-aided design (CAD) and computering and production process. "Design for Manufacturability Handbook" Computer Integrated 3 Manufacturing CIM | Production and Operations 3 2 Management Pre-requisites: MDPS381 Basic concepts of Production and Operations I services. Processes and technologies, Inventore Requirements Planning (MRP). Scheduling. Supproduction. Introduction to Enterprise Requirements Planning. Khojasteh Yacob, Production Management: Advance 2017. Design for Manufacturing 3 2 Pre-requisites: MDPS381 + MDPS242 This course covers the principles and practices effective manufacturing. Topics include design grach as casting, forming, machining, and assessed ection, geometric tolerancing, and design for scomputer-aided design (CAD) and computer-aided design and production process. "Design for Manufacturability Handbook" by Jar Computer Integrated 3 2 Manufacturing CIM | Dean Karnopp, Vehicle Dynamics, Stability, and Con- Production and Operations 3 2 2 Management Pre-requisites: MDPS381 Basic concepts of Production and Operations Manaservices. Processes and technologies, Inventory Requirements Planning (MRP). Scheduling. Supply-Coproduction. Introduction to Enterprise Requirement Polanning. Khojasteh Yacob, Production Management: Advanced Me 2017. Design for Manufacturing 3 2 2 Pre-requisites: MDPS381 + MDPS242 This course covers the principles and practices of deffective manufacturing. Topics include design guideling such as casting, forming, machining, and assembly selection, geometric tolerancing, and design for sustain computer-aided design (CAD) and computer-aided medicing and production process. "Design for Manufacturability Handbook" by James Computer Integrated 3 2 2 Manufacturing CIM | Production and Operations 3 2 2 0 Management Pre-requisites: MDPS381 Basic concepts of Production and Operations Management Pre-requisites: Processes and technologies, Inventory man Requirements Planning (MRP). Scheduling. Supply-Chain moroduction. Introduction to Enterprise Requirement Planning planning. Khojasteh Yacob, Production Management: Advanced Models, T 2017. Design for Manufacturing 3 2 2 0 Pre-requisites: MDPS381 + MDPS242 This course covers the principles and practices of designing effective manufacturing. Topics include design guidelines for such as casting, forming, machining, and assembly, as we selection, geometric tolerancing, and design for sustainability. Computer-aided design (CAD) and computer-aided manufacturing design and production process. B'Design for Manufacturability Handbook' by James G. Bralling Computer Integrated 3 2 2 0 Manufacturing CIM | Design for Manufacturing Design for Manufacturing Design for Manufacturing Tre-requisites: MDPS381 + MDPS381 Design for Manufacturing Tre-requisites: MDPS381 + MDPS381 Design for Manufacturing Tre-requisites: MDPS381 Design for Manufacturing This course covers the principles and practices of designing proceeding and production, and production and operations of design guidelines for various such as casting, forming, machining, and assembly, as well as selection, geometric tolerancing, and design for sustainability. The computer-aided design (CAD) and computer-aided manufacturing design and production process. Tolesign for Manufacturing and computer-aided manufacturing (CAD) and computer-aided manufacturing design and production process. Tolesign for Manufacturability Handbook' by James G. Bralla. Computer Integrated Manufacturing CIM | Dean Karnopp, Vehicle Dynamics, Stability, and Control, 2nd Edition, CR Production and Operations 3 2 2 0 0 Management Pre-requisites: MDPS381 Basic concepts of Production and Operations Management (POM). Desistervices. Processes and technologies, Inventory management. For Requirements Planning (MRP). Scheduling. Supply-Chain management. Journal of Planning. Scholasteh Yacob, Production to Enterprise Requirement Planning (ERP). Capablanning. Khojasteh Yacob, Production Management: Advanced Models, Tools, and Application. Design for Manufacturing 3 2 2 0 0 Pre-requisites: MDPS381 + MDPS242 This course covers the principles and practices of designing products for effective manufacturing. Topics include design guidelines for various manufactures acasting, forming, machining, and assembly, as well as considered toolerancing, and design for sustainability. The course also computer-aided design (CAD) and computer-aided manufacturing (CAM) to design and production process. "Design for Manufacturability Handbook' by James G. Bralla. Computer Integrated 3 2 2 0 0 Manufacturing CIM | Dean Karnopp, Vehicle Dynamics, Stab lity, and Control, 2nd Edition, CRC Preservoluction and Operations 3 2 2 0 0 0 Management Pre-requisites: MDPS381 Basic concepts of Production and Operations Management (POM). Design of services. Processes and technologies, Inventory management. Forecast Requirements Planning (MRP). Scheduling. Supply-Chain management. Just-in-production. Introduction to Enterprise Requirement Planning (ERP). Capacity at planning. Khojasteh Yacob, Production Management: Advanced Models, Tools, and Applications 2017. Design for Manufacturing 3 2 2 0 0 Pre-requisites: MDPS381 + MDPS242 This course covers the principles and practices of designing products for efficit effective manufacturing. Topics include design guidelines for various manufacturing such as casting, forming, machining, and assembly, as well as considerations selection, geometric tolerancing, and design for sustainability. The course also cover computer-aided design (CAD) and computer-aided manufacturing (CAM) tools to design and production process. "Design for Manufacturability Handbook' by James G. Bralla. Computer Integrated 3 2 2 0 0 Manufacturing CIM | Dean Karnopp, Vehicle
Dynamics, Stability, and Control, 2nd Edition, CRC Press, 201 Production and Operations 3 2 2 0 0 Management Pre-requisites: MDPS381 Basic concepts of Production and Operations Management (POM). Design of product services. Processes and technologies, Inventory management. Forecasting. MRequirements. Planning (MRP). Scheduling. Supply-Chain management. Just-in-time and production. Introduction to Enterprise Requirement Planning (ERP). Capacity and Agginanning. Khojasteh Yacob, Production Management: Advanced Models, Tools, and Applications, CRC 2017. Design for Manufacturing 3 2 2 0 0 Pre-requisites: MDPS381 + MDPS242 This course covers the principles and practices of designing products for efficient an effective manufacturing. Topics include design guidelines for various manufacturing product as casting, forming, machining, and assembly, as well as considerations for inselection, geometric tolerancing, and design for sustainability. The course also covers the computer-aided design (CAD) and computer-aided manufacturing (CAM) tools to optimidesign and production process. "Design for Manufacturability Handbook" by James G. Bralla. Computer Integrated 3 2 2 0 0 Manufacturing CIM | | | 0.000 000 50000000 | Credit | | | C | onta | ct Hou | ırs | | | |-----------------------|--|---|---------------------------------------|----------------------|-------------------------------|--------------------------------------|-----------------------------|--|----------------------------|-------------------| | Code | Name/Content | Hours | Lec | Tut
(2) | App.
Tut | Lab | Stud | Off.
Tut | Off.
Hrs. | Tota | | MEPS345 | Turbomachinery I | 3 | 2 | 2 | 0 | 0 | | | | 4 | | | Pre-requisites: MCNS202 | | | | | | | | | - | | | Fans, Compressors, Pumps and Turbo-machinery Classifications - compressors - Axial and radial florgas power plants, compressed a pneumatic control system, etc.), Compression - Compress | Axial flow
w hydrauli
air systen | fans a
ic turbi
n, chill | nes - | ompres
Sizing | sors –
in Vari | Centrifu
ous App | gal pur
olication | mps, fa | ns an | | References | V. Dakshina Murty, Turbomachiner
2018. | | | olicatio | ns, and | d Desig | n, First | Edition | , CRC I | Press, | | MEPS425 | Renewable Energy | 3 | 2 | 2 | 0 | 0 | | | | 4 | | | Pre-requisites: 85 Credits+ AA A | pproval | | | | | | | | | | | General review of thermodyna
electric power generation from
and ocean thermal energy recov
integrations. Course project. | solar en | ergy; | hydro | electri | c pow | er gene | eration | ; geot | nerma | | | | | | | | | | | | ,,0101 | | References | Mehmet Kanoglu, Yunus Cengel, J | | ala, Fu | ndam | entals a | and App | olication | s of Re | newab | | | References
MEPS435 | Mehmet Kanoglu, Yunus Cengel, J
Energy, 1st Edition, McGraw Hill; 2 | | ala, Fu
2 | ndam
2 | entals a | and App | olication | s of Re | newab | | | | Mehmet Kanoglu, Yunus Cengel, J
Energy, 1st Edition, McGraw Hill; 2
Internal Combustion Engine | 019. | | | | -0.0 | olication | s of Re | newab | e | | | Mehmet Kanoglu, Yunus Cengel, J
Energy, 1st Edition, McGraw Hill; 2
Internal Combustion Engine
Pre-requisites: 85 Credits+ AA A
Introduction to engine design
kinematics and dynamics of the
alternative fuels, engine electr | 019. 3 pproval with to crank notice are | 2
pics the | 2
hat in
nism, | 0
nclude
air cy | air c | apacity
ombust
e emis | , engi | ne vite
etroleu
gove | e 4 oration m and | | MEPS435 | Mehmet Kanoglu, Yunus Cengel, J
Energy, 1st Edition, McGraw Hill; 2
Internal Combustion Engine
Pre-requisites: 85 Credits+ AA A
Introduction to engine design
kinematics and dynamics of the | o19. approval with top crank nonics are | pics ti
nechai
nd fue
on, an | at in nism, l cell | 0 nclude air cycs. Autoratory | air c
cles, c
omotiv
report | apacity
ombust
e emis | , engi
ion, po
sions,
se proj | ne vit
etroleu
gover | e 4 |