PART [C]: SPECIALIZED PROGRAMS (13) INDUSTRIAL ENGINEERING AND MANAGEMENT Program (IEM) برنامج الهندسة الصناعية والإدارة ### (13) Industrial Engineering and Management Program (IEM) برنامج الهندسة الصناعية والإدارة #### رؤية البرنامج VISION The Industrial Engineering and Management program of the future will prepare students to become innovative problem-solvers and leaders in a rapidly changing technological landscape. Our graduates will be equipped with the knowledge and skills to optimize complex systems and processes across a wide range of industries, creating value for both organizations and society as a whole. سيقوم برنامج الهندسة الصناعية والإدارة في المستقبل بإعداد اطلاب ليصبحوا مبتكرين في حل المشكلات والقادة في مشهد تكنولوجي سريع التغير. سيتم تجهيز خريجينا بالمعرفة والمهارات اللازمة لتحسين النظم والعمليات المعقدة عبر مجموعة واسعة من الصناعات، وخلق قيمة لكل من المنظمات والمجتمع ككل. #### رسالة البرنامج MISSION The mission of our Industrial Engineering and Management program is to provide students with a comprehensive education in the principles, tools, and techniques of industrial engineering, preparing them to become effective problem-solvers and leaders in a wide range of industries. نتمثل مهمة برنامج الهندسة الصناعية والأدارة لدينا في تزويد الطلاب بتعليم شامل في مبادئ وأدوات وتقنيات الهندسة الصناعية، وإعدادهم ليصبحوا قادة وفعالين في حل المشكلات في مجموعة واسعة من الصناعات. # graduate attributes واطنات الخريج gineering Profession - Systems thinking: The ability to view complex systems as a whole and to analyze and optimize their components to achieve organizational objectives. - Analytical skills: The ability to apply mathematical and statistical methods to analyze data and make informed decisions. - Problem-solving skills: The ability to identify, define, and solve problems using a structured approach. - Leadership skills: The ability to lead and manage teams, communicate effectively, and make decisions in a fast-paced and dynamic environment. - Technical skills: The ability to use a wide range of tools and technologies such as simulation, optimization, and data analytics to design and improve systems. - Business acumen: The ability to understand the broader business context and to use this knowledge to make strategic decisions that create value for the organization. - Creativity and innovation: The ability to think outside the box, generate new ideas, and develop innovative solutions to complex problems. - Continuous improvement mindset: The ability to constantly evaluate processes and systems and to identify areas for improvement. - Ethical and social responsibility: The ability to recognize and address the ethical and social implications of industrial engineering decisions and actions. - 10. Lifelong learning: The ability to continue learning and developing skills throughout their career, keeping up to date with new technologies and best practices in the field. #### مرجعية البرنامج PROGRAM BENCHMARK | NARS 2018 | LEVEL A | LEVEL B | LEVEL C | LEVEL D | |-----------|-----------------|-----------------|-----------|---------| | 7 | Totally Adopted | Totally Adopted | See below | NA | The IEM program has adopted the National Academic Reference Standards (NARS) for Engineering issued by the National Authority for Quality Assurance and Accreditation for Education (NAQAAE) as the program objects to ensure the satisfaction of the national quality assurance standards. The NARS 2018 for Engineering are broad statements that define the main characteristics and performance expected from all engineering students (LEVEL A) upon their graduation so that the graduate attributes of the IEM program can be achieved as follows: - Master a wide spectrum of engineering knowledge and specialized skills and can apply acquired knowledge using theories and abstract thinking in real life situations. - Apply analytic critical and systemic thinking to identify, diagnose and solve engineering problems with a wide range of complexity and variation. - Behave professionally and adhere to encineering ethics and standards. - Work in and lead a heterogeneous team of professionals from different engineering specialties and assume responsibility for own and team performance. - Recognize his/her role in promoting the engineering field and contribute in the development of the profession and the community. - Value the importance of the environment, both physical and natural, and work to promote sustainability principles. - Use techniques, skills, and modern engineering tools necessary for engineering practice. - Assume full responsibility for own learning and self-development, engage in lifelong learning and demonstrate the capacity to engage in post- graduate and research studies. - Communicate effectively using different modes, tools, and languages with various audiences; to deal with academic/professional challenges in a critical and creative manner. - 10. Demonstrate leadership qualities, business administration and entrepreneurial skills. # In addition to the Competencies for All Engineering Programs the BASIC MECHANICAL Engineering graduate (LEVEL B) must be able to: - Model, analyze and design physical systems applicable to the specific discipline by applying the concepts of: Thermodynamics, Heat Transfer, Fluid Mechanics, solid Mechanics, Material Processing, Material Properties, Measurements, Instrumentation, Control Theory and Systems, Mechanical Design and Analysis, Dynamics and Vibrations. - Plan, manage and carry out designs of mechanical systems and machine elements using appropriate materials both traditional means and computer-aided tools and software contemporary to the mechanical engineering field. - Select conventional mechanical equipment according to the required performance. - Adopt suitable national and international standards and codes; and integrate legal, economic, and financial aspects to design, build, operate, inspect and maintain mechanical equipment and systems. In addition to the competencies of all engineering and basic mechanical engineering, the Industrial Engineering and Management (LEVEL C) graduate should be able to: - Identify, analyze, and optimize complex systems and processes, utilizing tools and techniques such as Lean Six Sigma, simulation, and data analysis. - Integrate engineering principles with business strategies, enabling them to understand the impact of their work on organizational performance and drive strategic decision-making. - Identify new opportunities for process improvement and develop their own start-up ventures while fostering a culture of innovation and entrepreneurship. ### توصيف المقررات SPECIALIZED COURSES CONTENTS | Code | Name | Credit Hours | Category | Pre-requisite | |---------|-----------------------|--------------|----------|----------------------------| | IEMS280 | Engineering Seminar | 1 | DR | 30 CR.HRS. +
AA APROVAL | | IEMS281 | Industrial Training-1 | 1 | FR | 60 CR.HRS. +
AA APROVAL | | IEMS381 | Industrial Training-2 | 2 | DR | IEMS281 +
AA APROVAL | | IEMS481 | Graduation Project-1 | 1 | FR | 110 CR.HRS. +
SOPHOMORE | | IEMS482 | Graduation Project-2 | 3 | DR | IEMS481 | | Total | | 2+6 | | | ### توصيف المقررات COURSES CONTENTS | | | 0 | Contact Hours | | | | | | | | |-----------|--|----------------------------------|------------------------|-----------------------------|-----------------------------------|-----------------------------|------------------------------------|------------------------------|---------------------------------|--------------| | Code | Name/Content | Credit
Hours | Lec | Tut
(2) | App.
Tut | Lab | Stud | Off.
Tut | Off.
Hrs. | Tota | | Faculty R | equirements | | 0 7 | | | (V | | | 8 6 | 2 | | IEMS280 | Engineering Seminar | 1 | 1 | 0 | | | | | | 1 | | | Pre-requisites: 30 CR.HRS. + | - AA AF | ROVA | | Š. | | | | | | | IEM COOK | implemented in his/her industria
on the guest presentation and
d
graded as Pass/Fail grade-syste | eliver the | ir own | preser | | | | | | | | IEMS281 | Industrial Training-1 | 1 | 0 | 0 | | | | | | 1 | | | Pre-requisites: 60 CR.HRS. + AA APROVAL | | | | | | | | | | | | Training on industrial establishmeduring a minimum period of three follows up visit to the training vering the industrial establishment period training. The student submits a stable of the student submits as a | e weeks.
nue and
rovides a | The proformally formal | ogram
y report
report | training
rt on per
t on the | g advis
rforma
studer | or sche
nce of to
nt's perfo | dules a
rainee(
ormano | at least
s). A M
ce durin | one
entor | | | | 0 | Contact Hours | | | | | | | | | | | |---------|--|--|---|---------------------------|--|---|---|--|---|---|-------------|--------------|-------| | Code | Name/Content | Name/Content | ode Name/Content | Name/Content | Credit
Hours | Lec | Tut
(2) | App.
Tut | Lab | Stud | Off.
Tut | Off.
Hrs. | Total | | IEMS381 | Industrial Training-2 | 2 | 0 | 0 | | | | | | 0 | | | | | | Pre-requisites: IEMS281 + | AA APPRO | DVAL | | 20 | 500 00 | | | | | | | | | | Training on industrial establishours, during a minimum per two follow-up visits to the trainment of the industrial establishour training. The student sof three members with one modeleges of engineering. The | riod of six we
ining venue:
blishment pro
submits a for
nember bein | eks. The
and for
ovides a
mal rep
g an ex | mally range formation | gram tra
report or
al report
nd prese
examin | n performance
t on the
entation
er app | advisor :
rmance
e studer
n to be e
ointed fr | schedu
of train
nt's per
evaluate | iles at I
nee(s).
forman
ed by a | east
A
ce
panel | | | | | IEMS481 | Graduation Project-1 | 1 | 0 | 2 | | | | | | 2 | | | | | | Pre-requisites: 110 credits | + SOPHCI | MORE | | | | | De. | _ | | | | | | | of the program. In GP1, st
represents an actual need
strategic objective of CUFE
and interpret market data,
ing knowledge and skills a
port/oral presentation statir
as well as a timed list of de | for the incue. Students and proposicquired. Together the expense of o | ustry o
are ex
ed an
he cou | r the opecte approunce is | d to sur
ach for
grade | nity a
rvey th
the so
d as f | nd refle
ne relat
olution,
Pass/Fa | ects the
ed liter
using
ail bas | e miss
rature,
the er
ed upo | ion and
collect
gineer
on a re | | | | | IEMS482 | Graduation Project-2 | 3 | 1 | 4 | 1 | | | | | 5 | | | | | | Pre-requisites: IEMS481 | | | | | | | | | | | | | | Sn | Graduation Project-2 is the
innovative solutions to prob
filling the deliverables state | olems enco | untere | d duri | ing the | imple | mentati | on pro | | | | | | ### متطلبات البرنامج PROGRAM REQUIREMENTS | Catego | ory | No. of courses | Course
Credit Hour | Total Credit
Hours | |----------------------|--------------|----------------|-----------------------|-----------------------| | Discipline | core/ | 1 | 4 | 4 | | Requirements | compulsory | 19 | 3 | 57 | | (DR) | Elective | 0 | 0 | 0 | | Total DR courses | - | 20 | | 61 | | 7 | core/ | 1 | 2 | 2 | | Program | compulsory | 7 | 3 | 21 | | Requirement (PR) | Flootises | 0 | 2 | 0 | | | Elective | 7 | 3 | 21 | | Total PR courses | urses | | Λ. | 44 | | Total Elective cours | es (DR & PR) | 7 | 3/17 | 21 | Discipline Requirements (DR) core/compulsory courses list | Code | Name | Credit
Hours | Pre-requisite | |---------|--|-----------------|------------------| | MTHS102 | Linear Algebra and Multivariable Integrals | 3 | MTHS002 | | MTHS104 | Differential Equations | 3 | MTHX003 | | MTHS114 | Numerical Analysis | 3 | MTHS102+ MTHS104 | | EPES201 | Electrical Engineering Fundamentals | rin3r D | PHYS002 | | EPES303 | Electric Drive Systems | 3 | EPES201 | | MCNS101 | Thermodynamics | 3 | PHYS001 | | MCNS202 | Fluid Mechanics | 3 | MTHS002 | | MCNS326 | Heat Transfer | 3 | MCNS101 | | MDPS217 | Machine Drawing | 3 | INTS001 | | MDPS352 | Machine Design | 3 | MDPS261 | | MDPS354 | Machine and System Design | 4 | MDPS352+ MDPS355 | | MDPS132 | Material Science | 3 | NONE | | MDPS232 | Engineering Materials | 3 | MDPS132 | | MDPS241 | Manufacturing Processes I | 3 | PHYS001 | | MDPS242 | Manufacturing Processes II | 3 | MDPS132 | | MDPS261 | Stress Analysis | 3 | EMCS002 | كلية الهندسة Faculty of Engineering | Code | Name | Credit
Hours | Pre-requisite | |---------|----------------------------------|-----------------|---------------| | MDPS251 | Kinematics of Machine Components | 3 | EMCS001 | | MDPS355 | Dynamics of Machine Components | 3 | MDPS251 | | MDPS372 | Control System Dynamics | 3 | MDPS355 | | MDPS371 | Mechanical Vibrations | 3 | MDPS355 | | Total | | 61 | | ### Program Requirements (PR) core/compulsory courses list | Code | | | Pre-requisit <mark>e</mark> | |---------|--|----|-----------------------------| | MDPS381 | Fundamentals of Industrial Engineering | 3 | NONE | | MDPS382 | Engineering Economy and Financial Management | 3 | E-A (GENS120) | | MDPS383 | Operations Research I | 3 | MTHS102 | | MDPS481 | Facilities Planning and Design | 3 | MDPS383 | | MDPS482 | Quality Management | 3 | MTHS005 | | MDPS483 | System Modeling and Simulation | 3 | MTHS005 | | MDPS484 | Production and Operations Management | 3 | MDPS381 | | MDPS485 | Industrial Engineering Lab | 2 | MDPS481 | | Total | | 23 | | ### Program Requirements (PR) elective courses list | Code | alized Tracke of Enginee | Credit
Hours | Pre-requisite | |-----------|---|-----------------|---------------| | ELECTIVES | : 7 courses (21 Credits) | | | | MDPS390 | Project Management | 3 | MDPS381 | | MDPS391 | Reliability and Maintenance Engineering | 3 | MTHS005 | | MDPS392 | Operations Research II | 3 | MDPS383 | | MDPS393 | Engineering Data Analysis | 3 | MTHS005 | | MDPS394 | Design of Experiments | 3 | MTHS005 | | MDPS395 | Human Factors and Ergonomics | 3 | MDPS381 | | MDPS396 | Work Design and Measurement | 3 | MDPS381 | | MDPS397 | Safety Engineering | 3 | MDPS381 | | Code | Name | Credit
Hours | Pre-requisite | |---------|---|-------------------|----------------------------| | MDPS398 | Material Handling Systems | 3 | MDPS381 | | MDPS399 | Product Development and Innovation | 3 | MDPS381 | | MDPS490 | Design for Manufacturing | 3 | MDPS381 +
MDPS242 | | MDPS491 | Supply Chain Management | 3 | MDPS381 +
MDPS383 | | MDPS492 | Computer Integrated Manufacturing CIM | 3 | MDPS381 +
MDPS242 | | MDPS493 | Industrial Management | 3 | MDPS381 | | MDPS494 | Industrial Information Systems | 3 | MDPS381 + 120
Credit | | MDPS495 | Manufacturing Systems Design | 3 | MDPS381 | | MDPS496 | Machine Learning for Industrial Engineering | 3 | MDPS381 +
MTHS005 | | MDPS497 | Lean Manufacturing and Six Sigma | 3 | MDPS381 | | MDPS498 | Business Process Reengineering | 3 | MDPS481 | | MDPS499 | Sustainable Operations | 3 | MDPS481 | | CMPS102 | Programming Techniques | 3 | INTS005 | | EPES305 | Industrial Instrumentation | 3 | EPES303 | | MDPS332 | Computer Aided Design and Manufacturing CAD/CAM
 3 | MDPS241 | | MDPS323 | Modern Manufacturing Processes | ng ³ P | MDPS241 +
MDPS242 | | MDPS428 | Advanced Topics in Manufacturing Processes | -3 | 85 Credits+ AA
Approval | | MDPS324 | Material Selection in Design | 3 | MDPS232 | | MDPS327 | Modeling and Simulation of Materials Processing | 3 | MDPS132 +
MDPS242 | | MDPS464 | Failure Analysis | 3 | MDPS261 +
MDPS232 | | MDPS423 | Robotics Engineering | 3 | MDPS251 | ### Proposed Study Plan - 8 semesters - Including Freshman Level | | | | | Contact Hours | | | | | | | | |------------|---------|---|--------|---------------|---------|---------|-----|------|--------|--------|-------| | s | Code | Name | Credit | Lec | Tut (2) | App Tut | Lab | Stud | OffTut | OffiHr | Total | | | MTHS002 | Calculus I | 3 | 2 | 2 | | | | | | 4 | | | EMCS001 | Engineering Mechanics - Dynamics | 3 | 1 | 2 | | 1 | | | | 4 | | SEMESTER 1 | PHYS001 | Mechanical Properties of Matter and
Thermodynamics | 3 | 2 | | 2 | 1 | | | | 5 | | ST | INTS001 | Engineering Graphics | 3 | 2 | | | | 3 | | | 5 | | ¥ | INTS005 | Information Technology | 2 | 1 | | | 3 | | lan. | | 4 | | SE | CHES001 | Chemistry for Engineers | 2 | 1 | 2 | | | | | N | 3 | | | GENS001 | Critical and Creative Thinking | 2 | 2 | | | | | A | | 2 | | | GENS004 | Proficiency and Capacity Building | 1 | 1 | - 1 | | | | | | 1 | | | | Sub-Total Sub-Total | 19/ | 13 | 6 | 2 | 4 | 3 | 0 | 0 | 28 | | | | | III | Contact Hours | | | | | | | | |----------|---------|--|-----|---------------|---------|----------|-----|------|---------|----------|-------| | S | Code | Code Name | | Lec | Tut (2) | App. Tut | Lab | Stud | Off Tut | Off. Hrs | Total | | | MTHS003 | Calculus 2 PACKS NT - NOT | 130 | 2 | 2 | Pr | nt | 25 | SIL | m | 4 | | - 0.1 | EMCS002 | Engineering Mechanics - Statics | 2 | 1 | 2 | | 7 | 00 | 010 | 711 | 3 | | R2 | PHYS002 | Electricity and Magnetism | 3 | 2 | | 2 | 1 | | | | 5 | | SEMESTER | MTHS005 | Introduction to Probability and Statistics | 3 | 2 | 2 | | | | | | 4 | | NES | MCNS101 | Thermodynamics | 3 | 2 | 2 | | | | | | 4 | | SE | MDPS132 | Materials Science | 3 | 2 | 0 | 2 | 1 | | | | 5 | | • | MDPS001 | Fundamentals of Manufacturing
Engineering | 2 | 1 | | 1 | 2 | | | | 4 | | | | Sub-Total | 19 | 12 | 8 | 5 | 4 | 0 | 0 | 0 | 29 | | | | | | | | Con | tac | t Ho | urs | | | |----------|---------|--|--------|-----|---------|---------|-----|------|---------|--------|-------| | s | Code | Name | Credit | Lec | Tut (2) | App Tut | Lab | Stud | Off Tut | Off Hr | Total | | | MDPS261 | Stress Analysis | 3 | 2 | 2 | | | | | 2 2 | 4 | | က | MDPS217 | Machine Drawing | 3 | 1 | 2 | 0 | 2 | 0 0 | | | 5 | | ER | MDPS241 | Manufacturing Processes I | 3 | 2 | - | 1 | 2 | | | | 5 | | SEMESTER | MTHS102 | Linear Algebra and Multivariable Integrals | 3 | 2 | 2 | | | | | | 4 | | × | MTHS104 | Differential Equations | 3 | 2 | 2 | | | | | | 4 | | SE | GENS005 | Writing and Presentation Skills (E-A) | 2 | 2 | | | | | | | 2 | | _ | GENS120 | Fund. of Economics and Accounting (E-A) | 2 | 2 | - | | | | | | 2 | | | | Sub-Total | 19 | 13 | 10 | 1 | 2 | 0 | 0 | 0 | 26 | | | | | | | Ser 3 | Cor | itac | t Ho | urs | | | |--------|---------|-------------------------------------|--------|-----|---------|----------|-------|------|---------|----------|-------| | S | Code | Name | Credit | Lec | Tut (2) | App. Tut | Lab | Stud | Off Tut | Off. Hrs | Total | | | MTHS114 | Numerical Analysis | 3 | 2 | 2 | 0 | | | | | 4 | | 4 | EPES201 | Electrical Engineering Fundamentals | 3 | 2 | | 3 | | | | | 5 | | ER | MCNS202 | Fluid Mechanics | 3 | 2 | 2 | | | | | | 4 | | S | MDPS251 | Kinematics of Machine Components | 3 | 2 | | 3 | - 0 | | | | 5 | | SEMEST | MDPS242 | Manufacturing Processes II | 3 | 2 | Q | 2 | 1 | es | SIC | m | 5 | | SE | MDPS232 | Engineering Materials | 3 | 2 | 2 | | 50000 | | | | 4 | | | IEMS280 | Seminar | 1 | 1 | | | | | | | 1 | | | | Sub-Total | 19 | 13 | 6 | 8 | 1 | 0 | 0 | 0 | 28 | | | | | | | | Con | tac | t Ho | urs |) | | |----------|---------|---|-----------------|-----|---------|---------|-----|------|---------|--------|-------| | s | Code | Name | Credit
Hours | Lec | Tut (2) | App Tut | Lab | Stud | Off Tut | Off Hr | Total | | | GENS002 | Societal Issues | 2 | 2 | | | | | | | 2 | | 2 | MDPS352 | Machine Design | 3 | 2 | | 3 | | | | | 5 | | | MCNS326 | Heat Transfer | 3 | 2 | 2 | | | | | | 4 | | SEMESTER | MDPS381 | Fundamentals of Industrial Engineering | 3 | 2 | | 3 | | | | | 5 | | ME | MDPS355 | Dynamics of Machine Components | 3 | 2 | | 3 | | | | | 5 | | SE | EPES303 | Electric Drive Systems | 3 | 2 | | 3 | | | | | 5 | | | GENS110 | Fundamental of Management, Risk and Environment (E-A) | 2 | 2 | | | | | | | 2 | | | | Sub-Total | 19 | 14 | 2 | 12 | 0 | 0 | 0 | 0 | 28 | | | | | 1 | | | Cor | itac | t Ho | ours | | | |--|---------|--|--------|-----|---------|----------|------|------|---------|----------|-------| | s | Code | Name | Credit | Lec | Tut (2) | App. Tut | Lab | Stud | Off Tut | Off. Hrs | Total | | | MDPS372 | Control System Dynamics | 3 | 2 | | 2 | 1 | | | | 5 | | 9 | MDPS354 | Machine and System Design | 4 | 2 | 4 | n | | | | | 6 | | ER | MDPS371 | Mechanical Vibrations | 3 | 2 | 2 | 0 | 0 | es | SIL | | 4 | | SEMESTER | MDPS382 | Engineering Economy and Financial Management | 3 | 2 | 2 | | | | | | 4 | | SE | MDPS383 | Operations Research I | 3 | 2 | 0 | 2 | 1 | | | | 5 | | <u>, </u> | XXXSXXX | Program Elective 1 | 3 | 2 | 2 | | | | | | 4 | | | | Sub-Total | 19 | 12 | 12 | 2 | 1 | 0 | 0 | 0 | 27 | | | | | | | | Cor | tac | t Ho | urs |) | | |----------|---------|--------------------------------|--------|-----|---------|---------|-----|------|---------|---------|-------| | s | Code | Name | Credit | Lec | Tut (2) | App Tut | Lab | Stud | Off Tut | Off.Hrs | Total | | | MDPS481 | Facilities Planning and Design | 3 | 2 | 2 | | | | | | 4 | | 7 | MDPS482 | Quality Management | 3 | 2 | 2 | | | | | | 4 | | ER | MDPS483 | System Modeling and Simulation | 3 | 2 | | 3 | | | | | 5 | | SEMESTER | XXXSXXX | Program Elective 2 | 3 | 2 | 2 | | | | | | 4 | | ME | XXXSXXX | Program Elective 3 | 3 | 2 | 2 | | | | | | 4 | | S | XXXSXXX | Program Elective 4 | 3 | 2 | 2 | | | | | | 4 | | | IEMS481 | Graduation Project - 1 | 1 | 0 | 2 | | | | | | 2 | | | | Sub-Total | 19 | 12 | 12 | 3 | 0 | 0 | 0 | 0 | 27 | | | | | | | F 1 | Cor | itac | t Ho | urs | | | |----------|---------|--------------------------------------|--------|------|---------|----------|------|------|---------|----------|-------| | s | Code | Name | Credit | Lec. | Tut (2) | App. Tut | Lab | Stud | Off Tut | Off. Hrs | Total | | | MDPS484 | Production and Operations Management | 3 | 2 | 2 | | | | | | 4 | | 80 | MDPS485 | Industrial Design Lab | 2 | 1 | | 1 | 3 | | | | 4 | | SEMESTER | GENS2XX | UR Free Elective | 2 | 2 | Q | M | OT | es | SIC |)n | 2 | | /ES | XXXSXXX | Program Elective 5 | 3 | 2 | 2 | | | | | | 4 | | SEN | XXXSXXX | Program Elective 6 | 3 | 2 | 2 | | | | | | 4 | | 0, | XXXSXXX | Program Elective 7 | 3 | 2 | 2 | | | | | | 4 | | | IEMS482 | Graduation Project - 2 | 3 | 1 | 4 | è | | r | | | 5 | | | | Sub-Total | 19 | 12 | 12 | 0 | 3 | 0 | 0 | 0 | 27 | ### توصيف المقررات COURSES CONTENTS | | | | | | С | ontac | t Hou | rs | | | |------------|---|--|----------------------------|--|-----------------------------------|---|------------------------------|-------------------------------|-------------------------------|------------------------------| | Code | Name/Content | Credit
Hours | Lec | Tut
(2) | App.
Tut | Lab | Stud | Off.
Tut | Off.
Hrs | Total | | Discipline | Compulsory Courses | | | | | | | | | | | MTHS102 | Linear Algebra and
Multivariable Integrals | 3 | 2 | 2 | | | | | | 4 | | | Pre-requisites: MTHS002 | | | | | | | | | | | | Orthonormal Bases, The Functions of Matrices. Fur and its Applications, Vector Applications, Line and Sur | ctions of
r Fields, (
face Integ | Seven
Curl ar
rals w | al Var
nd Div
ith App | iables, a
ergence
plication | The Gra
, Doub
s. | le and | of a Sc
Triple I | alar Fu
Integra | inction
Is with | | References | Calculus Early Transcende
Elementary Linear Algebra | | | | | | | | | | | MTHS104 | Differential Equations | 3 | 2 | 2 | 0 | | | | | 4 | | | Pre-requisites: MTHS003 | | | | - 1 | | | | | | | Sp | First-order differential equations; modeling with equations; method of und higher order differential e applications, shifting theory using Laplace transform; F | n first ordetermined quations; rems, con | der d
coeff
series | ifferents
icients
s solution the | ntial equalitions; Lacorem; s | uations
ion of p
aplace
solution | ; highe
parame
transfo | er-orde
ters; n
orm; pr | r diffe
nodelin
opertie | erential
g with
es and | | References | "A First Course in Differ
2017, by Dennis G. Zill "Fundamentals of Differ
Arthur Snider | | | | | · · · | | | | | Engineering | | | 0111 | | | С | ontac | t Hou | rs | | | |---------|--------------------|-------------|-----|------------|-------------|-------|-------|-------------|-------------|-------| | Code | Name/Content | Hours Hours | Lec | Tut
(2) | App.
Tut | Lab | Stud | Off.
Tut | Off.
Hrs | Total | | MTHS114 | Numerical Analysis | 3 | 2 | 2 | 0 | | | | | 4 | Pre-requisites: MTHS102 + MTHS104 Basic concepts of floating- point arithmetic- Conditioning of a problem-Numerical
stability of an algorithm – Linear systems: direct methods (Gauss elimination, LU factorization, Choleski) – Iterative methods (Jacobi –Gauss-Seidle – SOR). Approximation of Functions: polynomials and piecewise polynomial interpolation, splines, discrete least squares. Nonlinear equations: Newton's method and its discrete variants, fixed point iteration. Numerical integration: Newton- Cotes formulas, Gaussian quadrature rules, composite rules. Initial value problems for ordinary differential equation: one-step methods (Runge-Kutta methods) and multistep (Adams) methods. Stiff problems. | References | S. Chapra and R. Canali, Ni | umerica | Metho | ods for | Engineer | s, 7th ed., McGra | w Hill, 2014. | |------------|--|---------|-------|---------|----------|-------------------|---------------| | EPES201 | Electrical Engineering
Fundamentals | 3 | 2 | 0 | 3 | | 5 | | | Pre-requisites: PHYS002 | | | | 5 | | | | | Electrical elements and ele | | | | | | | Electrical elements and electrical quantities. Basic electrical laws (voltage and current divider rules, star-delta transformation). Analysis of DC circuits (branch currents, node voltages and Thevenin's theorem). First order capacitive transients. Time varying signals (average and RMS values, voltage and current waveforms). Analysis of AC circuits (vector and complex representations of sine waves, concept of impedance, power analysis, power factor correction). Three phase circuits (line and phase voltages, star and delta connected balanced loads, three phase power). Transformers circuits. Course project. References A. R. Hambley, Electrical Engineering: Principles and Applications, 7th ed. Pearson, 2018. | | | | | | С | ontac | t Hou | rs | | | |------------|---|---------------------------------------|--|------------------------|--|----------|----------------------|-------------------|-------------|------------------| | Code | Name/Content | Credit
Hours | Lec | Tut
(2) | App.
Tut | Lab | Stud | Off.
Tut | Off.
Hrs | Tota | | EPES303 | Electric Drive Systems | 3 | 2 | 0 | 3 | | | | | 5 | | | Pre-requisites: EPES201 | | | | | | | | | | | | Power Electronic Convert
Inverters. DC Motor Drives
Thyristor and Chopper DC
Speed Control, Inverter-fee
Characteristics, Drive Circu | s: Structu
Drives. In
d Drives. | re and
cuction
Stepp | Oper
n Mot
er Mo | ation of
or Drive | DC Mo | otors, T
or Struc | ypes o
ture ar | f DC N | notors
ration | | References | P. C. Sen, Principles of Ele | ctric Mac | hines | and P | ower Ele | ectronic | cs, 3rd | ed., Wi | ley, 20 | 13 | | MCNS101 | Thermodynamics | 3 | 2 | 2 | 0 | 2 | | | | 4 | | | Pre-requisites: PHYS001 | | | | | A | | | | | | | Basic concepts. Pure subsecond law of thermodyna plant, course project | | | | | | | | | | | References | Claus Borgnakke and Rich
Edition, Wiley, 2019. | ard E. So | nntag, | Fund | amental | s of Th | ermody | namic | s, 10th | i | | MCNS202 | Fluid Mechanics | 3 | 2 | 2 | 0 | | | | | 4 | | | Pre-requisites: MTHS002 | | | | | | 1 1 | | | | | Spe | Fluid kinematics, flow typ
Angular momentum and
analysis and modeling, Vi
applications, Course project | Energy e
scous flo | equation of the property th | ns, A
oipes | pplication | ons. Si | imilitud | e and | dimer | sional | | References | Philip M. Gerhart, Andrew I
Fundamentals of Fluid Med | | 7 | | The state of s | | n, You | ng and | Okiish | ni's | | | | | | | С | ontac | t Hou | rs | | | |-----------------------|---
---|----------------------------|---------------------------|--|------------------------------|-------------------------------|------------------------------|--|----------------------------| | Code | Name/Content | Credit
Hours | Lec | Tut
(2) | App.
Tut | Lab | Stud | Off.
Tut | Off.
Hrs | Tota | | MCNS326 | Heat Transfer | 3 | 2 | 2 | 0 | | | | | 4 | | | Pre-requisites: MCNS101 | | | | | | • | | | | | | Conduction: General equations steady-state conduction with thermal conductivity, fins fundamentals of convection empirical correlations. Rad studies and computer applications. | th internation extended the control of | al hea
ended
ionles | surfa
s grou | eration,
ices, un
ips, natu | steady
steady
iral and | condu
condu
forced | uction
uction.
I conve | with va
Convection, | ariable
ection
use o | | References | Frank P. Incropera, David P Fundamentals of Heat and I | MULTIPLE SHOPPING | | 2000 | COLUMN TO STATE OF THE PARTY | OF EUROPOWER, IN EUROPOW | COCHE ENGINE | | ACCEPTANCE AND ADDRESS OF THE PARTY P | | | MDPS001 | Fundamentals of
Manufacturing Engineering | 2 | 1 | 0 | 1 | 2 | | | | 4 | | | Pre-requisites: NONE | | | | | | | | | | | | Engineering Materials - Ele
processes- metal forming p
Metal cutting and finishing
and 3D printing | rocesses | s - Sh | aping | of plast | ic mate | erial | Joining | proce | sses | | References
MDPS217 | Mikell P. Groover, Fundame
Systems, 7th Edition, Wiley,
Machine Drawing | 2019. | Woder | vin | oorir | ng: Ma | terials, | Proces | sses, a | nd 5 | | | Pre-requisites: INTS001 | | | _ | | | | | | | | | Sketching and drafting of a drawing, working drawing tolerances, surface roughned devices, keys, splines, geariveting conventions. Standaided graphics application. | dimen:
ess. Star
ers, pulle | s oning
idard
ys, be | g, lim
machi
arings | its, fits,
ine elem
s, pipe o | Geor
ents (t | metrica
hreads
tions, e | l and
, faste
etc.) - | dimer
ners, I
Weldir | nsiona
ocking
ng and | | References | David A. Madsen, David P. Cengage Learning, 2016. | Madsen, | Engin | eering | g Drawin | ig and l | Design | 6th E | dition, | | | | | _ | | | С | ontac | t Hou | rs | | | |------------|--|---|--|---|--|---|--|--|---|---| | Code | Name/Content | Credit
Hours | Lec | Tut
(2) | App.
Tut | Lab | Stud | Off.
Tut | Off.
Hrs | Tota | | MDPS132 | Materials Science | 3 | 2 | 0 | 2 | 1 | | | | 5 | | | Pre-requisites: NONE | | | | | • | • | | | • | | | Introduction to materials eng
structures, crystal imperfe
mechanisms and plastic defo
of cast iron, Phase transform
of Metals. Mechanical tes
hardness. | ctions,
rmation
nations | Diffu
, phas
and is | sion,
se diag
sother | Mecha
grams, li
mal hea | nical pron car
t treatr | properti
bon pha
nents (| ies, S
ase dia
TTT), | strengt
gram,
Classif | nening
Types
ication | | References | William D. Callister Jr., David
Introduction, 10th Edition, Wi | | | n, Mat | erials S | cience | and En | gineer | ing: An | S)* | | MDPS241 | Manufacturing
Processes I | 3 | 2 | 0 | 1 | 2 | | | | 5 | | | Pre-requisites: PHYS001 | | | | - | 7 | | | | | | | Examination of metal cutting Mechanics of cutting, chip fo material, tool wear, tool life metrology – Gauges – Errors test of geometrical shape: str | rmation
, econo
s in mea | , shea
my in
asuren | r plan
meta
nent – | e, veloc
al cutting
Linear | ity rela
g. Intro | tions, n | nercha
and | nt circl | e, too | | References | Fundamentals of Machining a
& Francis Inc | and Mad | chine ' | Tools, | Geoffre | y Booti | royd, 3 | Brd edi | tion, Ta | - | | MDPS261 | Stress Analysis | 3 | 2 | 2 | 0 | Jg r | IUI | 299 | IUII | 4 | | | Pre-requisites: EMCS002 | | | | | | | | | | | | Equilibrium, continuity, mate bending and twisting mome loading, bending and torsion and elasto-plastic bars, resublique bending, combined stresses, maximum shear Application to simple frammeasurement. Course project | nt diag
n, defor
idual s
bendin
stress,
es, thir | rams.
mation
tresse
g and
allow
n-walle | Stres
n, stiff
s. Co
l torsi
vable
ed ve | ses in siness, st
mbined
on. Two
stresses
ssels, s | simply
train er
loadin
o-dimer
s, Mol | loaded
nergy.
g, eccensional
nr's cir | elasti
Stress
entric
stress
cle re | c bars
ses in
normal
ses, pr
presen | : axia
elastic
l load
incipa
tation | | | Russell C. Hibbeler, Mech | 0.000.00 | <u> </u> | 0.000 | | | | - | | | Faculty of Engineering | | | | | | С | ontac | t Hou | rs | | | |-----------------------|---|--|--|--|--|---|--|--------------------------|---|--| | Code | Name/Content | Credit
Hours | Lec | Tut
(2) | App.
Tut | Lab | Stud | Off.
Tut | Off.
Hrs | Total | | MDPS232 | Engineering Materials | 3 | 2 | 2 | 0 | | | | | 4 | | | Pre-requisites: MDPS132 | | | | | • | | | | | | | Heat treatments of steel, Classits alloys and aluminum and Composites, Introduction to Composites. | its alloys, | | | | | | | | | | References | William D. Callister Jr., David 10th Edition, Wiley, 2018. | G. Rethwi | sch, M | aterial | s Scienc | e and E | ngineeri | ng: An | Introdu | iction, | | MDPS242 | Manufacturing Processes II | 3 | 2 | 0 | 2 | 1 | | | | 5 | | | Pre-requisites: MDPS132 | | | | | | | | | | | | defects. Forming: Metal forming produced criterion; slip line fields; | | | | | | - | | All the second second second | | | | Forming: Metal forming produced criterion; slip line fields; and sheet metal forming proof metal forming dies; princip Welding: Welding processes coatings; weldability and well | estimation
ocesses; poles of powers; welding
ding of value | om of for
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecis | orce ar
on form
orming
gy sou
metals | nd energ
ning pro
urces ar
and all | y requi
ocesses
nd their | rements
; featur
charac | s; techres of d | nology
lifferent
s; fluxe | of bulk
t types
es and | | References | Forming: Metal forming procyield criterion; slip line fields; and sheet metal forming processes of metal forming dies; princip Welding: Welding processes coatings; weldability and well welded joints; weld testing an Manufacturing Technology, Ventuckers | estimation
ocesses; poles of powers; welding
ding of vand inspec | om of
forecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision | orce ar
on forr
orming
gy sou
metals
ourse | nd energing pro-
urces are
and alleproject. | y requi
ocesses
nd their
oys; me | rements
; feature
charac
etallurgio | s; techres of deteristic | nology
lifferent
s; fluxe
racteris | of bulk
t types
es and
stics of | | References
MDPS251 | Forming: Metal forming produced criterion; slip line fields; and sheet metal forming proof metal forming dies; princip Welding: Welding processes coatings; weldability and wellwelded joints; weld testing an | estimation
ocesses; poles of powers; welding
ding of vand inspec | om of forecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision
orecision | orce ar
on forr
orming
gy sou
metals
ourse | nd energing pro-
urces are
and alleproject. | y requi
ocesses
nd their
oys; me | rements
; feature
charac
etallurgio | s; techres of deteristic | nology
lifferent
s; fluxe
racteris | of bulk
t types
es and
stics of | | Opt | Forming: Metal forming procyield criterion; slip line fields; and sheet metal forming processes of metal forming dies; princip Welding: Welding processes coatings; weldability and welwelded joints; weld testing and Manufacturing Technology, Volume 2013 Kinematics of Machine | estimation
ocesses; poles of poven; welding
ding of vand inspec- | om of for
orecision
wider for
generations
tion. C
cry, For | orce ar
on forr
orming
gy sou
metals
ourse
orming | nd energining pro-
urces are
and alleproject. | y requi
ocesses
nd their
oys; me | rements
; feature
charac
etallurgio | s; techres of deteristic | nology
lifferent
s; fluxe
racteris | of bulk
t types
es and
stics of
raw Hill | | Opt | Forming: Metal forming produced criterion; slip line fields; and sheet metal forming proof metal forming dies; princip Welding: Welding processes coatings; weldability and well welded joints; weld testing and Manufacturing Technology, Vo. 2013 Kinematics of Machine Components | geometrichanisms Cam-forchanisms | om of forecision of forecision of generations tion. Corry, Forecastion, Corry, Forecastion, Generation of the condition th | orce are on formorming gy source metals ourse orming 0 motion ge mechar traitions, | ning pro-
urces ar
and alli-
project.
and We
3
an and
echanis
anisms
ns (sim
Simulat | mechans and designed, colored | characetallurgion | topological analysis | gy, Mats: (posis, sta | of bulk
t types
es and
stics of
raw Hill
5
achine
osition,
andard
etary): | | | | I | | | С | ontac | t Hou | rs | | | |------------|---|--|-------------------|------------------------------------|---|----------------------------------|--
--|-------------------------------------|---------------------------------------| | Code | Name/Content | Credit
Hours | Lec | Tut
(2) | App.
Tut | Lab | Stud | Off.
Tut | Off.
Hrs | Total | | MDPS352 | Machine Design | 3 | 2 | 0 | 3 | | | | | 5 | | | Pre-requisites: MDPS261 | | | | | • | | • | | | | | Design procedures – Factor loading – Safety factors as various design calculations of detachable joints: (three (welding, interference fitting elements: springs, power Course project. | nd allowa
i. Interpre
aded join
ng, rivetir | tation
ts, key | resser
and u
s and
eting, | s - Des
usage of
d splines
adhesio | ign var
compos) – De
on) – | riants a
onent d
esign o
Design | and involved i | ersion
eets. I
nanent
me m | s. The
Design
joints:
achine | | References | Richard Budynas, Keith Nis
McGraw Hill, 2014. | bett, Shi | gley's | Mecha | anical Er | ngineer | ing Des | sign, 1 | 0th Ed | ition, | | MDPS355 | Dynamics of Machine
Components | 3 | 2 | 0 | 3 | 511 | | | | 5 | | | | | | | | | | | | 1 | | | Pre-requisites: MDPS251 | | | | 1 | 0.8 | | | All | · | Faculty of Engineering | Code Name/Content Cred | | | | | С | ontac | t Hou | rs | | | |------------------------|---|---|---|--|---|---|---|-----------------------------------|---|---| | Code | Name/Content | Hours | Lec | Tut
(2) | App.
Tut | Lab | Stud | Off.
Tut | Off.
Hrs | Total | | MDPS354 | Machine and System
Design | 4 | 2 | 4 | 0 | | | | | 6 | | | Pre-requisites: MDPS352 + | MDPS3 | 55 | | | • | • | | | | | | Design of Power transmission design (spur, helical and be Design, Clutch design. | | | | - | - | - | | | | | | Course Project is a major ac
project students in small gr
machines and components
mechanical modules. These
accuracy level commensura-
constructed and assessed a
The evaluation of the project
fellow students and the instru | oups will
and on
will be s
ate with
as to the
ct will be | mech
electe
their
extent | the lanical
d sucl
function | knowled
I design
h as to
onal red
rifying a | ge acquirements of the second | uired of andle the ducation ents. The mining with | n the ne des nal val ne des their | mechar
sign of
ue and
signs v
require | some
of an
vill be
ments. | | References | Richard Budynas, Keith Nisbe
Hill, 2014. | tt, Shigley | 's Med | hanica | I Engine | ering De | esign, 1 | 0th Edi | tion, Mo | Graw | | MDPS372 | Control Systems Dynamics | 3 | 2 | 0 | 2 | 1 | | | | 5 | | | Pre-requisites: MDPS355 | | | | | | | | | | | | Introduction to system dynal
electrical, electronic, hydraul | | | | | | | | | anical | | Spe | space approach; Time-dome
analysis – Root locus; Fr
Computer simulation and cas
K. Ogata, Modern Control Eng | ain analy
equency-
se studies | ss –
comai
. Cour | Block
n ana
se pro | diagram
alysis–
iject. | s - Tra
Bode o | nsient | respon | se - S | State-
tability | | References MDPS371 | space approach; Time-dome
analysis – Root locus; Fr
Computer simulation and cas | ain analy
equency-
se studies | ss –
comai
. Cour | Block
n ana
se pro | diagram
alysis–
iject. | s - Tra
Bode o | nsient | respon | se - S | State-
tability | | | space approach; Time-dome
analysis – Root locus; Fr
Computer simulation and cas
K. Ogata, Modern Control Eng | equency-
se studies
ineering, | comai
comai
Cour
5th ed | Block
n ana
se pro
., Pear | diagram
alysis–
iject. | s - Tra
Bode o | nsient | respon | se - S | State-
tability
plots. | | | space approach; Time-dome
analysis – Root locus; Fr
Computer simulation and cas
K. Ogata, Modern Control Eng
Mechanical Vibrations | equency- se studies ineering, 3 pts, sour- transmis | s s -
comai
c Cour
5th ed
2
ces an
sibility | Block
n ana
se pro
., Pear
2 | diagram
alysis—
oject.
son, 201
ses of vi | Bode of | nsient
diagram
s, free a
ee and
uencies | and forced | se S
lyquist
ced vib
vibrati | State-
tability
plots
4
rations
ons of
nodes, | | Program (| Courses (Compulsory) | | | | | | | | | | |------------|--|---|--------------------------|--------------------------|--|--------------------------------------|--|--------------------------------------|--|--| | S 115 | | Credit | | | С | onta | ct Hou | ırs | | | | Code | Name/Content | Hours | Lec. | Tut
(2) | App.
Tut | Lab | Stud | Off.
Tut | Off.
Hrs. | Tota | | MDPS381 | Fundamentals of Industrial
Engineering | 3 | 2 | 0 | 3 | | | | | 5 | | | Pre-requisites: NONE | 32. | | | | | (t | | | V. | | | This course provides an intribasic concepts, principles, ar efficiency, and quality in ma production systems design, control,
and quality control. field, as well as the various controls. | nd tools unufactur
work me
The cour | ng an
thods
se als | y indu
d sen
and r | strial e
vice income
neasurers the | nginee
dustrie
ement
histor | ers to in
s. Topi
, produ
y and | nprove
cs cov
action
curren | produ
vered i
plannin
t state | nctivity
nclude
ng and
of the | | References | "Introduction to Industrial Eng | ineering | by A | vrahar | m Shtu | b and | Jonath | an F. E | Bard. | | | MDPS382 | Engineering Economy and Financial Management: | 3 | 2 | 2 | | 3 | | | | 4 | | | Pre-requisites: E-A (GENS12 | (0) | | | / | | 1 | | | | | | principles of economics ar
organizations, including time
financial accounting, budgeting | e value | of mo | oney, | invest | ment | analysi | s, cos | | | | References | "Engineering Economic Analy Eschenbach. | sis" by [| onald | G. N | ewnan, | Jeron | ne P. L | avelle, | and T | ed G. | | MDPS383 | Operations Research I Pre-requisites: MTHS102 | 03- | rig | irie | e²ir | ıg' [| rof | ess | ion | 5 | | | Introduction to Operations
Graphical solution. The
Transportation and assignme | Simplex | algo | rithm. | Dua | lity a | ind se | ensitivi | - | blems
nalysis | | References | Frederick Hillier, Gerald Liebe
McGraw Hill, 2021. | erman, Ir | troduc | ction to | o Oper | ations | Resea | rch 11 | th Edit | ion, | Faculty of Engineering | | | Credit | | | C | onta | ct Ho | urs | | | |------------|---|--|-----------------|----------------|--------------------|-------------------|---------------------|------------------|---------------------|---------------------| | Code | Name/Content Facilities Planning and | Hours | Lec. | Tut
(2) | App.
Tut | Lab | Stud | Off.
Tut | Off.
Hrs. | Total | | MDPS481 | Facilities Planning and
Design | 3 | 2 | 2 | 0 | 0 | | | | 4 | | | Pre-requisites: MDPS383 | - 10 | | | | • | • | | • | • | | | relationships. Material h operations. Quantitative fa and maintaining facilities pl | andling s
cilities plar
an. | ystem
ning i | s. La
model | s. Prep | planni
paring, | ng m | odels.
nting, | Ware | ehouse
nenting | | References | Alberto Garcia-Diaz, J. Mac
2007. | Gregor Si | nitn, F | acilitie | s Plan | ning a | na Des | ign, Pe | earson | | | MDPS482 | Quality Management | 3 | 2 | 2 | 0 | 0 | | | | 4 | | | Pre-requisites: MTHS005 | | | | 3/4 | | Ĵi de | - 3 | | 7. | | | Introduction to quality systems and standards: si control charts for variable sampling plans. Quality fun | ix sig <mark>ma a</mark>
es and att | nd IS | O. Re | engine
cess | ering.
capabi | Statist
lity and | ical quality | uality of | control:
otance- | | References | | | | 11 | TT | | | | | | | MDPS483 | Systems Modelling and
Simulation | 3 | 2 | 0 | 2 | 1 | | | | 5 | | | Pre-requisites: MTHS005 | | | | | T. | | | | | | Spe | Basic theory of industria
simulation studies. Simulation and service s
optimization. Use of software
simulation. | ation mode
ystem pro | ling a | nd a | oplicati
put an | ion to
alysis. | mediu
Varia | m and | d large
eduction | e-scale
on and | | References | Frederick Hillier, Gerald Lie
McGraw Hill, 2021. | berman, I | troduc | ction to | o Oper | ations | Resea | rch 11 | th Edit | ion, | Engineering | | | Credit | | | C | onta | ct Ho | urs | | | |------------|--|-----------------------------|--------------------------------------|------------------------------------|---|---------------------------------------|----------------------------|-----------------------------|-----------------------|---------------------------| | Code | Name/Content | Hours | 1 10000000 | Tut
(2) | App.
Tut | Lab | Stud | Off.
Tut | Off.
Hrs. | Total | | MDPS484 | Production and Operations
Management | 3 | 2 | 2 | 0 | 0 | | | | 4 | | | Pre-requisites: MDPS381 | 0: | | | | | | | | | | | Basic concepts of Productio
and services. Processes and
Requirements Planning (MRI
lean production. Introduction
Aggregate planning. | technolo
P). Scheo | gies, luling. | Supp | ory ma | nagen
in mar | nent. Fo | orecas
ent. Jus | sting. N
st-in-tir | laterial
ne and | | References | Khojasteh Yacob, Production
CRC Press, 2017. | Manage | ment: | Adva | nced N | lodels, | Tools, | and A | pplicat | tions, | | MDPS485 | Industrial Engineering Lab | 2 | 1 | 0 | 0 | 3 | | 1 | | 4 | | | Pre-requisites: MDPS481 | | | | | A | | 02 | | | | | Introduction to Work Study (Vortice of method study involving jordiagram, Multiple activity chart. Fundamental hand morand Chrono-cycle-graph. Vortice of WM. PMTS: Note that the computerized WM. PMTS: Note that the computerized with the computer of the work of the computer compu | b selections. Mi
Vork Me | on, red
chart
cro-ma
asurer | cording. Prince
otion a
ment | g facts
ciples of
and Me
(WM). | s, critic
of moti
emo-m
Work | al examination econotion s | mination
nomy.
tudies | Two-h | String
nanded
graph | | References | No specific reference is requ | ired for the | is cou | rse, a | s it is a | pract | ical lab | -based | cours | e | # **Specialized Tracks of Engineering Profession** | | Hell escaling | Credit | | | С | onta | ct Ho | urs | | | |------------|--|--|-----------------------------------|------------------------------------|--|------------------------------------|--|---------------------------------------|------------------------------|------------------------------| | Code | Name/Content | Hours | Lec. | Tut
(2) | App.
Tut | Lab | Stud | Off.
Tut | Off.
Hrs. | Tota | | MDPS390 | Project Management | 3 | 2 | 2 | 0 | 0 | | | | 4 | | | Pre-requisites: MDPS381 | A.2 | | | | | | | | | | | Introduction to Project planni
Breakdown Structure, Responsibilities using the Critical
Review Technique (PERT).
(Crashing a schedule), Gamonitoring and control, Comp | onsibility
al Path I
Resour
ntt Char | Chart
Metho
ce le
t, Tin | . Neto
d (CF
veling
ne ov | work d
PM) an
and
erlaps, | iagran
d the
allocat
Time | Progration, T | edule
am Ev
ime-co | analys
aluatio
ost tra | is and
in and
de of | | References | "A Guide to the Project Mana Management Institute. | gement E | Body o | f Kno | wledge | (PMB | OK Gu | iide)" b | y Proj | ect | | MDPS391 | Reliability and Maintenance
Engineering | 3 | 2 | 2 | 0 | 0 | | | | 4 | | | Pre-requisites: MTHS005 | | | | | | 1 | | | | | 0- | This course focuses on the particular emphasis on different principles of reliability theory strategies, and life cycle cost for reliability analysis and maintenance programs and the | rent mai
y, failure
analysis
naintena | ntena
analy
. The
nce p | nce s
sis, p
cours
lannin | trategie
revent
e also
ng, as | es and
ive an
covers
well | d pract
d corre
s the us
as the | ices. I
ective
se of s
imple | t cove
mainte
oftwar | ers the
enance
e tools | | References | "Maintenance Planning and S | Schedulin | g Han | dbook | " by Ri | chard | (Doc) I | Palme | 101 | | | MDPS392 | Operations Research II | 3 | 2 | 2 | 0 | 0 | | | | 4 | | | Pre-requisites: MDPS383 | | | | | | | | - | | | | This course builds upon the | | | | | | | | | duces | | | advanced techniques for or
Topics include
nonlinear pro-
course also covers the use of | gramming | g, gan | ne the | eory, ar | nd sto | chastic | progra | ammin | stems
g. The | | | | Credit | | | С | onta | ct Hou | urs | | | |-----------------------|---|--|---------------------------------------|--|--|-----------------------------------|---|---|------------------|--------------------------------| | Code | Name/Content | Hours | Lec. | Tut
(2) | App.
Tut | Lab | Stud | Off.
Tut | Off.
Hrs. | Total | | MDPS393 | Engineering Data Analysis | 3 | 2 | 2 | 0 | 0 | | - | | 4 | | | Pre-requisites: MTHS005 | | | | | | | | 100 | | | | This course covers the prir applications. Topics include sign of experiments, and software tools for data analys | tatistical
data vi | infere
sualiz | nce, l
ation. | The c | esis te
course | sting, r | egress
covers | sion and | alysis, | | References | "Data Analysis and Statistics Ginzton. | for Engin | eering | and I | Physica | al Scie | nce" by | y Edwa | ard L. | | | MDPS394 | Design of Experiments | 3 | 2 | 2 | 0 | 0 | | | | 4 | | | Pre-requisites: MTHS005 | | | | 90 3 | | | | | ė. | | | Principles of experimental de | esign. A | anoon | 11760 | COITIDIE | eree corc | 1CK (1H4) | | | | | | and Greco-Latin square de Response surface methodolo industrial experiments. | | Genera | al fac | torial | design | s. 2k | Facto | rial de | esigns. | | References | and Greco-Latin square de
Response surface methodolo | gy and i | Genera
robust | al fac
desig | torial
in. Plar | design
nning, | s. 2k
perforr | Facto | rial de | esigns. | | | and Greco-Latin square de Response surface methodolo industrial experiments. | gy and i | Genera
robust | al fac
desig | torial
in. Plar | design
nning, | s. 2k
perforr | Facto | rial de | esigns. | | References
MDPS395 | and Greco-Latin square de
Response surface methodolo
industrial experiments. "Design and Analysis of Expe
Human Factors and | riments | Senera
robust
by Do | desig | torial
n. Plar
C. Mor | design
nning,
ntgome | s. 2k
perforr | Facto | rial de | esigns.
alyzing | | | and Greco-Latin square de
Response surface methodolo
industrial experiments. "Design and Analysis of Expe
Human Factors and
Ergonomics | riments" 3 ciples are oducts, so use. It chanics applicate | by Do 2 and tectystem opics anthri | al factorial designation of the comments th | C. Mor C. Mor o es of held environmentry, are an fact | ntgome
numan
onmer
man k | factor
factor
its that
ohysiological
and ergo | Factor
ming a
s and
t are s
ogy a | ergon
afe, et | 4 omics, ficient atomy, action | Faculty of Engineering | | | Credit | | | С | onta | ct Ho | urs | | | |-----------------------|--|--|---|----------------------------------|--|-----------------------------------|------------------------------------|---|--|--| | Code | Name/Content | Hours | Lec. | Tut
(2) | App.
Tut | Lab | Stud | Off.
Tut |
Off.
Hrs. | Total | | MDPS396 | Work Design and
Measurement | 3 | 2 | 2 | 0 | 0 | | | | 4 | | | Pre-requisites: MDPS381 | 0: | | | | | | | | | | | This course covers the prin which focus on designing job for workers. Topics include sampling, and work design design and measurement in service industries. | job ana
principles | ork pro
lysis,
. The | work
cours | es that
measi
se also | are et | fficient,
nt, wo
rs the | effect
rk star
applica | ive, an
ndards
ation o | d safe
, work
f work | | References | "Work Systems: The Methods
Groover and Jeffrey E. Herrm | | remen | t & Ma | anagen | nent o | f Work' | by Mi | kell P. | | | MDPS397 | Safety Engineering | 3 | 2 | 2 | 0 | <u>0</u> | | | | 4 | | | Pre-requisites: MDPS381 | | | | | FIL | | 07 | | | | | This course covers the princ | iples and | techr | niques | of saf | etv en | aineer | ina, wh | nich fo | cus on | | | This course covers the princidentifying and controlling had Topics include hazard analysis accident investigation, and sapplication of safety engine construction, and healthcare. | zards in v
ysis, risk
safety ma | various
asse
anage | s indu
essme
ment | stries to
nt, saf
system | o prev
fety rens. Th | ent acc
gulation
e cour | ns an | and in
d stan
o cove | njuries.
dards,
ers the | | References | identifying and controlling has
Topics include hazard anal-
accident investigation, and s
application of safety engin | zards in v
ysis, risk
safety ma
neering | various
asse
anage
in va | s indu
essme
ment
rious | stries to
nt, saf
system
indus | o prev
fety rens. Th
tries, | ent acc
gulation
e cour | ns an | and in
d stan
o cove | njuries.
dards,
ers the | | References
MDPS398 | identifying and controlling has Topics include hazard analyaccident investigation, and sapplication of safety engine construction, and healthcare. | zards in v
ysis, risk
safety ma
neering | various
asse
anage
in va | s indu
essme
ment
rious | stries to
nt, saf
system
indus | o prev
fety rens. Th
tries, | ent acc
gulation
e cour | ns an | and in
d stan
o cove | njuries.
dards,
ers the | | | identifying and controlling has Topics include hazard analyaccident investigation, and sapplication of safety enging construction, and healthcare. "Safety Engineering: Principle Material Handling Systems | zards in v
ysis, risk
safety ma
neering
es and Pr
ciples and
storage,
material
ige syste | various assessmange in various decire control hand ams; a | s indu | stries to the system industrial of modern of modern of system of modern of system of the t | ection ent, systems | handl
of m
systems
s. The | eidents ins an se als as m ling sys aterials s, and course | and ind stand of coveranufactions of the coveranufacti | dards, ers the sturing, which various ations; covers | Faculty of Engineering | | | Credit | | | С | onta | ct Ho | urs | | | |------------|--|--|--|---|---|---|--|--|--|--| | Code | Name/Content | Hours | Lec. | Tut
(2) | App.
Tut | Lab | Stud | Off.
Tut | Off.
Hrs. | Total | | MDPS399 | Product Development and
Innovation | 3 | 2 | 2 | 0 | 0 | | | | 4 | | | Pre-requisites: MDPS381 | | | | | | | | | | | | This course covers the theorem an emphasis on the industries development process, creat selection, design for manufathe course also covers the ain various industries, such as | trial engi
tivity and
ecturabilit
application | neering idea idea idea idea idea idea idea idea | ig per
tion to
totypin
oduct | rspective
echnique
ng and
develo | ve. To
ues, o
testin
opmen | pics in
concept
g, and
t and in | deve
comm | the p
lopmer
nercialision prir | roduct
nt and
zation. | | References | "Product Design and Develop | ment" by | / Karl | T. Ulri | ch and | Steve | n D. E | pinge | C. | | | MDPS490 | Design for Manufacturing | 3 | 2 | 2 | 0 | ,0 | | - | | 4 | | | Pre-requisites: MDPS381 + N | IDPS24 | 2 | | | Sint. | | | | | | References | for material selection, geom-
also covers the use of compu
(CAM) tools to optimize the d
"Design for Manufacturability | uter-aide
esign ar | d desi | gn (Ca
uction | AD) an | d com | | | | | | | | | | | T con | 1000 | | 1 | | | | MDPS491 | Supply Chain Management
Pre-requisites: MDPS381 + M | 3
MDPS383 | 2 | ne | GLIL | 0 | rof | 622 | ion | 4 | | | The Supply Chain Management and techniques used in management design, planning, and management demand forecasting, inventor transportation planning, programply chain metrics, such as emphasizes the importance partners and the use of information of the supply Chain Management. | aging sup
gement of
ry mana
curement
s supply of
of colla
mation tea | pply ch
f supp
gemer
t, and
chain of
aborat
chnolo | ain op
oly cha
nt, dis
supp
cost, s
ion a
gy to | peration
ains. The
stribution
blier manager
service
and coor
suppor | ns. It pone country
on netwanage
level,
ordinate
t supp | rovides
irse co
work de
ment.
and lea
ion and
ly chair | s an overs to
esign,
It also
ad time
nong s
n decis | rerview pics so logistic cove . The couply sion ma | of the
uch as
and
rs key
course
chain
aking. | | References | "Supply Chain Management:
Peter Meindl. | Strategy | , Plani | ning, a | and Op | eration | by S | unii Ch | opra a | na | Faculty of Engineering | | | Credit | | | С | onta | ct Ho | urs | | | |------------|--
---|--|-----------------------------------|--|--|--|--|--|---| | Code | Name/Content | Hours | Lec. | Tut
(2) | App.
Tut | Lab | Stud | Off.
Tut | Off.
Hrs. | Total | | MDPS492 | Computer Integrated
Manufacturing CIM | 3 | 2 | 2 | 0 | 0 | | | | 4 | | | Pre-requisites: MDPS381 + I The Computer Integrated Int | Manufacto
computer-
CIM, such
outer num
n as addit
emphasiz | based
has conerical
ive ma | manu
contra
inufac
integ | ufacturi
er-aide
ol (CN
turing,
ration | ing system of designation in the designation of designation of designation in the designation of | stems.
gn (CA
d robo
manul
nputer- | The c
D), co
otics. It
facturing
based | ourse
mputer
t also
ng, and
techno | covers
r-aided
covers
I smart
ologies | | References | "Computer Integrated Manuf | | | 100000 | | Service of the servic | - | purposet the | | | | MDPS493 | Industrial Management | 3 | 2 | 2 | 0 | 0 | | | | 4 | | | Pre-requisites: MDPS381 | | - | | | 4 | | | | | | | measurement, and quality industrial management, such | course for | focuse
Topic
huma
ent. I
manag | s on
cs co
in re
he co | the pla
vered
esource
ourse | in the ma | orgar
cours
nagem
overs | nizatior
e inclu
nent,
emerg | n, lead
ude st
perfor
ing tre | ership,
rategic
mance
nds in | | References | "Industrial Management" by | A. B. Gup | ta. | | | | | - | | | | MDPS494 | Industrial Information CKS | 0 f | 2 | 120 | eoir | go | Prof | ess | ion | 4 | | | Pre-requisites: MDPS381 + 1 | 120 Credi | t | | | | | | | | | | Pre-requisites: MDPS381 + 120 Credit Industrial Information Systems is a course that covers the use of information technology in industrial settings. The course focuses on the design, implementation, and management of information systems that support industrial operations. Topics covered in the course include data management, database systems, decision support systems, enterprise resource planning systems, and supply chain management systems. The course also covers emerging technologies such as big data analytics, the Internet of Things (IoT), and Industry 4.0. | | | | | | | | | | | References | "Industrial Information Syster B. Fichman and C. F. Kemer | ns: A Gui | de to | Desigi | n, Anal | ysis, a | nd Imp | lemen | tation" | by N. | | | | Credit | | | С | onta | ct Ho | urs | | | |------------|---|---|-----------------------------------|-------------------------------------|----------------------------------|--|--|--------------------------------------|--------------------------------------|--| | Code | Name/Content | Hours | Lec. | Tut
(2) | App.
Tut | Lab | Stud | Off.
Tut | Off.
Hrs. | Total | | MDPS495 | Manufacturing Systems
Design | 3 | 2 | 2 | 0 | 0 | | | | 4 | | | Pre-requisites: MDPS381 | | | | | | | | | | | | Manufacturing Systems Design skills to design and optimize manufacturing systems design work cell design. Students simulation tools to model and topics such as lean manufacturing systems. | manufaci
in, incluci
will lear
d optimiz | turing
ing sy:
how
e mar | syster
stem a
to u
nufacti | ms. The archited se coruring s | e cour
cture,
nputer
system | rse cov
materia
-aided
s. The | ers the
al flow
desig
cours | e princ
analys
n (CA
e also | iples of
sis, and
D) and
covers | | References | "Manufacturing Systems Des | sign and A | nalys | is" by | Mesut | Perviz | pour a | nd Nac | der Asr | nafi. | | MDPS496 | Machine Learning for
Industrial Engineering | 3 | 2 | 2 | 0 | A C | | | 1 | 4 | | | Pre-requisites: MDPS381 + N | MTHS005 | | | / | | | | | | | | This course covers the fund
they apply to industrial en-
problems as machine lear
preprocess and transform
machine learning to problemaintenance, and supply characters. | gineering
ming tas
data, ard
lems in | probl
ks, s
d eva
qualit | ems,
elect
luate
y cor | Studer
appropand in
and in | nts wil
priate
nterpre
produc | ll learn
algorit
t resu | how
hms :
lts. Ap | to for
and m
oplication | mulate
nodels,
ons of | | References | Geron. | 1 10 2 | kit-Lea | arn, K | eras, a | nd Ter | nsorFlo | w" by | Aurélie | n | | MDPS497 | Lean Manufacturing and Six
Sigma | 3 | 2 | 2 | 0 | 0 | | | | 4 | | | Pre-requisites: MDPS381 | | | | | | | | | | | | The Lean Manufacturing ar techniques of Lean Manufacturing eliminating waste in production and defects in those to manufacturing operations. | cturing an
tion process
and other | d Six
esses,
es. St | Sigma
while
udents | a. Lear
Six S
s will le | n Man
Sigma
earn ho | ufactur
is a m
ow to a | ing is
nethod
pply th | for re
ese m | nod for
ducing
ethods | | | analysis to identify and solve | problems | 5. | | | | | | | itisticai | | Code | Name/Content | Credit | Contact Hours | | | | | | | | | | | |------------
--|--------|---------------|------------|-------------|---------|---------|-------------|--------------|-------|--|--|--| | | | Hours | Lec. | Tut
(2) | App.
Tut | Lab | Stud | Off.
Tut | Off.
Hrs. | Total | | | | | MDPS498 | Business Process
Reengineering | 3 | 2 | 2 | 0 | 0 | | | | 4 | | | | | | Pre-requisites: MDPS481 | | | | | | | | | | | | | | | Brief description: The course introduces students to the concept of Business Proces Reengineering (BPR), which is the analysis and redesign of workflows within and between organizations. The course covers the fundamental principles of BPR, the step involved in a typical BPR project, and the tools and techniques used in BPR. The course also explores the potential benefits and risks associated with BPR, and the challenges that organizations face when implementing BPR initiatives. | | | | | | | | | | | | | | References | "Reengineering the Corporation: A Manifesto for Business Revolution" by Michael Hammer and James Champy. | | | | | | | | | | | | | | MDPS499 | Sustainable Operations | 3 | 2 | 2 | 0 | 0 | | | A STATE | 4 | | | | | | Pre-requisites: MDPS481 | | | | | | | | | | | | | | | operations management concepts and practices, which are critical to achieve economic social, and environmental sustainability in industrial systems. The course includes topic such as sustainable supply chain management, green manufacturing, and eco-design operations and services. It also covers the assessment and optimization of sustainability performance using various techniques and tools, including life cycle assessment (LCA carbon footprint analysis, and energy efficiency. | | | | | | | | | | | | | | References | "Sustainable Operations and | | | - | Chains | s" by F | R. Uzsc | y and | S. K. C | Supta | | | | | CMPS102 | Programming Techniques 3 4 2 4 5 | | | | | | | | | | | | | | | Pre-requisites: INTS005 | | | | | | | | | | | | | | | Introduction to software design - evolution and comparison of programming languages types and characteristics of translators - structured programming - function versus object oriented programming- introduction to parallel programming- program maintenance & testing - documentation - numerical and non-numerical examples-programming project. | | | | | | | | | | | | | | References | Programming and Problem Solving with C++: Comprehensive 6th Edition. Jones & Bartlett Learning, 2016. Programming: principles and practice using C++, 2nd edition. Pearson Education, 2014. | | | | | | | | | | | | | | Code | Name/Content | Credit | | Contact Hours | | | | | | | | | |-----------------------|--|--------|-------|---------------|-------------|--------|----------|-------------|--------------|-------|--|--| | | | Hours | Lec. | Tut
(2) | App.
Tut | Lab | Stud | Off.
Tut | Off.
Hrs. | Total | | | | EPES305 | Industrial Instrumentation | 3 | 2 | 2 | 0 | 0 | | | | 4 | | | | | Pre-requisites: EPES303 | | | | | | | | | | | | | | Logic gates, circuit design with logic gates. Operational amplifier circuits and applications. Digit electronics. Performance of analogue and digital transducers; selecting a proper transducer for given application. Analogue transducers: solenoids, thermocouples, pressure transducers. Digit transducers: optical encoders, ultrasonic sensors. Signal conditioning: signal analysis, frequences optical encoders, ultrasonic sensors. Signal conditioning: signal analysis, frequences filter design, op-amp circuits. Data acquisition systems (A/D and D/A converters Stepper motors: microprocessors: structure, programming, applications. Course project. | | | | | | | | | | | | | References | 899 | | | | | | | | | | | | | MDPS332 | Computer Aided Design and
Manufacturing CAD/CAM | 3 | 2 | 2 | 0 | | | | | 4 | | | | | Pre-requisites: MDPS241 | | | | | A | | | | | | | | - Cn | accuracy, repeatability, end effecter, sensors, robot programming, robot languages. Grou Technology: part families, part classifications and coding systems, group technology machine cell, concepts of composite part, benefits and limitations. Computer aided process planning Retrieval type process planning systems, generative process planning systems, machinability data systems, computer generated time standard. Computer Integrated Manufacturing: Types of manufacturing systems, types of CIMS, special manufacturing systems, Flexible Manufacturing Systems FMS, Manufacturing Cells, Course project. | | | | | | | | | | | | | References
MDPS323 | Modern Manufacturing | 3 | 2 | 2 | 0 | 5 | 101 | 000 | 1011 | 4 | | | | | Processes | | | | 0 | | | | | 77 | | | | | Pre-requisites: MDPS241 + MDPS242 | | | | | | | | | | | | | | Gear and thread manufacturing; non-conventional metal cutting; Electro-chemics machining; Electro discharge machining; Laser beam machining; Electron beam machining; Water jet machining; Rapid Prototyping; micro system product; micro fabrication processes; Property enhancing of metals; cleaning and surface treatment Coating and deposition processes; Thermal and mechanical coating; Processing of integrated circuit. | | | | | | | | | | | | | References | Mikell P. Groover, Fundamen
Systems, 7th Edition, Wiley, | | odern | Manu | ıfacturiı | ng: Ma | terials, | Proce | sses, a | and | | | | Code | Name/Content | Credit
Hours | Contact Hours | | | | | | | | | | |------------|---|-----------------|---------------|------------|-------------|--------|-----------|-------------|--------------|--------|--|--| | | | | Lec. | Tut
(2) | App.
Tut | Lab | Stud | Off.
Tut | Off.
Hrs. | Total | | | | MDPS428 | Advanced Topics in
Manufacturing Processes | 3 | 2 | 2 | 0 | 0 | | | | 4 | | | | | Pre-requisites: 85 Credits + AA Approval | | | | | | | | | | | | | | The course covers advanced topics in manufacturing of relevance to emergine technologies. The topic may include: flexible manufacturing systems, reverse engineering and prototyping, integrated manufacturing, manufacturing intelligence, 3-liprinting, Additive manufacturing, The course includes independent research project of advanced manufacturing processes. | | | | | | | | | | | | | References | N/A | | | | | | A = = | | | | | | | MDPS324 | Material Selection in Design | 3 | 2 | 2 | 0 | 0 | | | | 4 | | | | | Pre-requisites: MDPS232 | | | | | | | | | | | | | | Classification of all engineering material; Materials properties; Performance indices Materials selection charts; Performance indices with geometry factors; Case studies. | | | | | | | | | | | | | References | M. Ashby, Materials Selection Heinemann, 2017. | in Mec | anica | Desi | gn, 5th | Editio | n, Butte | erworth | 1- | | | | | MDPS327 | Modeling and Simulation of
Materials Processing | 3 | 2 | 2 | | | | | | 4 | | | | | Pre-requisites: MDPS132 + MDPS242 | | | | | | | | | | | | | Spe | Overview and hand-on practi
forming, sheet metal forming
before going to each technic
software. | g, polym | er inje | ction, | etc. | summa | ary of | numer | ical m | ethods | | | | MDPS464 | Failure Analysis | 3 | 2 | 2 | | | | | | 4 | | | | | Pre-requisites: MDPS261 + MDPS232 | | | | | | | | | | | | | | Functional and structural failures. Tribological surface failure, abrasive, adhesive, fatigue wear, fretting and corrosive wear. Design against wear. Modes of bulk failures, excessive deformation, buckling, yielding, plastic instability, creep and creep rupture. Incrementa collapse, fracture mechanics and crack propagation. Damage-tolerant design Identification and detection of failures. Applications to some mechanical components Case studies. Course project. | | | | | | | | | | | | | References | Russell C. Hibbeler, Mechani | cs of Mat | terials | in SI | Units, 1 | Oth ed | dition, F | earso | n, 201 | 8. | | | | Code | Name/Content | Credit | Contact Hours | | | | | | | | | |------------|--|------------|---------------|------------|-------------|----------|---------|-------------|--------------|---------|--| | | | Hours | Lec. | Tut
(2) | App.
Tut | Lab | Stud | Off.
Tut | Off.
Hrs. | Total | | | MDPS423 | Robotics Engineering | 3 | 2 | 2 | | | | | | 4 | | | | Pre-requisites: MDPS251 | | | | | | | | | | | | | Introduction to Robotics Ted
dynamics of planar robots,
Trajectory planning and retraining, course
project | Kinematic | s of 3 | -D rot | oots ar | nd hon | nogene | ous tra | ansforr | nation, | | | References | J. Craig, Introduction to Rob | otics: Me: | hanic | s and | Contro | l, 4th e | ed. Pea | rson, 2 | 2017. | | | Specialized Tracks of Engineering Profession