PART [C]: SPECIALIZED PROGRAMS (6) Electrical Energy Engineering Program (EEE) برنامج هندسة الطاقة الكهربية #### (6) Electrical Energy Engineering Program (EEE) برنامج هندسة الطاقة الكهربية This program is designed to allow for international collaboration with similar international credit hours programs. #### رؤية البرنامج VISION Excellence in engineering education in the area of electrical energy both locally and internationally. ريادة التعليم الهندسي في مجال الطاقة الكهربية محليا ودوليا #### رسالة البرنامج MISSION The program aims at providing Egypt and the Arab and African regions with excellent graduates in electrical energy engineering, renewable energy and their applications. Program graduates will be able to devote their advanced knowledge and their communication and practical skills to achieving sustainable development and serving the community and the environment. نسعى إلى إمداد الوطن والمنطقة العربية والأفريقية والعالم بخريج متميز في مجال هندسة الطاقة الكهربية والطاقة المتجددة وتطبيقاتهما المختلفة يكون قادرا على استخدام المعرفة العلمية المتقدمة وكافة مهارات الاتصال والعمل الفعال بما يساهم في تحقيق التنمية المستدامة وخدمة المجتمع والبيئة. #### مواصفات الخريج GRADUATE ATTRIBUTES In addition to the Competencies for the BASIC ELECTRICAL Engineering graduate and similar programs, Electrical Energy Engineering program graduate must be able to: - Design, supervise, operate, and maintain systems to generate traditional as well renewable electrical energy. - Design, supervise, operate, and maintain systems to generate, transmit, control and use of electrical energy and smart micro electrical energy systems. - Design and develop electrical generators, electrical motors, protection systems, and transmission systems. - Develop, design, and maintain low voltage distribution systems. - Design, supervise, operate, and maintain industrial control systems and industrial instrumentation. - Plan and manage different phases of electrical engineering projects, from construction to operation. - Prepare and review sketches, specifications, documentations and data sheets for electric power generation, protection, control, and delivery systems. - Design and operate information systems for electrical energy systems. بالإضافة للمهارات الهندسية العامة التي يكتسبها خريج كلية الهندسة جامعة القاهرة، سوف يتمكن خريج برنامج هندسة الطاقة الكهربية من الآتي: - التصميم والاشراف والتشغيل والصيانة لنظم توليد الطاقة الكهربية التقليدية والمتجددة. - التصميم والاشراف والتشغيل والصياتة لنظم نقل وتوزيع واستخدام الطاقة الكهربية ونظم الطاقة الكهربية الذكية والمصغرة. - 3. تصميم وتطوير المولدات الكهربية والمحركات الكهربية ونظم الوقاية ونظم نقل الطاقة. - 4. تطوير وتصميم وصياتة نظم التوزيع ذات الجهد المنخفض. - التصميم و الاشراف و التشغيل و الصيانة لنظم التحكم الصناعي و أجهزة القياس الصناعية. - تخطيط وإدارة مختلف مراحل مشروعات الهندسة الكهربية من الانشاء إلى التشغيل. - تحضير ومراجعة الرسوم والمواصفات والوثائق والبياتات الخاصة بنظم توليد الطاقة الكهربية، ونظم الوقاية، والتحكم، والتوزيع. - 8. تصميم وتشغيل نظم المعلومات المتعلقة بنطم الطاقة الكهربية. #### مرجعية البرنامج PROGRAM BENCHMARK The program is designed to meet the National Academic Standards NARS2018 in addition to meeting the Accreditation Board for Engineering and Technology ABET standards and the Canadian Engineering Accreditation Board CEAB standards. بستند تصميم البرنامج للمعابير الاكاديمية القومية للعام 2018 بالإضافة إلى المعابير المراجعية الأمريكية ABET والمعابير المرجعية الكندية CEAB والمعابير المرجعية الكندية | NARS 2018 | LEVEL A | LEVEL B | LEVEL C | LEVEL D | |-----------|--------------------|--------------------|---|---------| | | Totally
Adopted | Totally
Adopted | The program adopted level C
Competencies-See below | NA | In addition to the Competencies for the BASIC ENGINEER, the ELECTRICAL Engineering graduate, the Electrical Energy Engineering program graduate must be able to: #### Level C - 1. Design, supervise, operate and maintain systems to generate, transmit, control and use of electrical energy. - Design and develop electrical generators, electrical motors, protection systems, and transmission systems. - 3. Develop, design, and maintain low voltage distribution systems. - Design, supervise, operate, and maintain industrial control systems and industrial instrumentation. - Plan and manage different phases of electrical engineering projects, from construction to operation. - Prepare and review sketches, specifications, documentations and data sheets for electric power generation, protection, control and delivery systems. - Design, maintain and manage information systems for electrical energy systems. Specialized Tracks of Engineering Profession ## توصيف المقررات SPECIALIZED COURSES CONTENTS | Code | Name | Credit Hours | Category | Pre-requisite | | | | |---------|-------------------------------|--------------|------------------------------|-----------------------------|----|--------------------------|--| | EEES280 | Engineering Seminar | 1 | DR | 30 CR.HRS. +
AA APPROVAL | | | | | EEES281 | Industrial Training-1 | 1 | FR | 60 CR.HRS. + | | | | | EEES381 | EEES381 Industrial Training-2 | | S381 Industrial Training-2 2 | | DR | EEES281 + AA
Approval | | | EEES481 | Graduation Project-1 | 1 | FR | 110 CRHs + AA
Approval | | | | | EEES482 | Graduation Project-2 | 3 | DR | EPES481 | | | | | Total | | 2+6 | | | | | | # توصيف المقررات COURSES CONTENTS | | Name/Content | Cupalit | Contact Hours | | | | | | | | |--|---|--|---|---|-------------------------------------|--|--|---|--|-------------------------| | Code | | Credit Hours | Lec | Tut
(2) | App.
Tut | Lab | Stud | Off.
Tut | Off.
Hrs | Total | | Faculty F | Requirements | | | - 1 | | | | F | 7 | | | EEES280 | Engineering Seminar | 1 | 1 | 0 | | | | | | 1 | | | Pre-requisites: 30 CR.HRS. + AA Approval | | | | | | | | | | | | Talks and presentations are inv | vited from | indust | rial e | stablis | hments | s releva | nt to th | ne prod | gram. | | The guest speaker should discuss the organization, management, and reimplemented in his/her industrial establishment. Students exercise writing reports on the guest presentation and celiver their own presentation about course is graded as Pass/Fail grade-system. | | | | | | | | | | | | EEES281 | Industrial Training-1 | 1 | 0 | 0 | | | | | | 0 | | | Pre-requisites: 60 credits + AA | Approval | | | | | | | | | | | Training on industrial establish hours, during a minimum period least one follow-up visit to the trainee(s). A Mentor in the induperformance during training. The evaluated by a panel of three nappointed from industry or other grade-system. | d of three
training ve
istrial esta
he student
nembers v | weeks
nue and
blishm
t subm
with on | s. The
nd for
nent p
nits a f
ne me | mally
rovide
formal
mber t | am trai
reports
s a for
report
peing a | ining ac
on per
mal rep
and pre
an exter | lvisor s
formar
ort on
esenta
nal exa | schedunce of
the stution to
aminer | les at
ident's
be | | | | Cuadia | Contact Hours | | | | | | | | |---------|---|---|--
--|---|--|--|--|--|-------------------------| | Code | Name/Content | Credit
Hours | Lec | Tut
(2) | App.
Tut | Lab | Stud | Off.
Tut | Off.
Hrs | Tota | | EEES381 | Industrial Training-2 | 2 | 0 | 0 | | | | | | 0 | | | Pre-requisites: EEES281 + AA | APPROV | AL | | i. | | | | | | | | Training on industrial establish hours, during a minimum period least two follow-up visits to the trainee(s). A Mentor in the indeperformance during training. The evaluated by a panel of three appointed from industry or oth | od of six we
training v
ustrial esta
he student
members v | eeks. Tenue a
blishn
t subm
vith or | The prand for nent prints a familiary and the me | rogram
rmally
rovide
formal
mber t | report
s a for
report
report
being a | on per
mal rep
and pre
and pre | sor sch
formar
ort on
esenta
nal exa | nedules
nce of
the stu
tion to
aminer | at
ident's
be | | EEES481 | grade-system. Graduation Project 1 | | | 0 | | 3 | | | | 1 0 | | EEE3401 | Pre-requisites: 110 CR.HRS. | + All Sonh | 0 | 0 | 200 + 1 | 10.00 | roval | - | _ | 3 | | | Students – in groups (or indivi-
the program. In GP1, students
represents an actual need for
strategic objective of CUFE. S
and interpret market data, and
knowledge and skills acquired
presentation stating the expec-
a timed list of deliverables. | s provide a
the industr
tudents and
proposed
. The cour | clear
y or the
e expe
an ap | identification identi | fication
nmunit
to surv
th for the
d as P | of a re
y and
ey the
ne solu
ass/Fa | eal-life
reflects
related
ition, us
il based | the mi
literate
sing the | m that
ission a
ure, co
e engir
a repo | and
llect,
neerin | | EEES482 | Graduation Project-2 | 3 | 1 | | | | | 6 | | 7 | | Sp | Pre-requisites: EEES481 + AA Graduation Project-2 is the se innovative solutions to problem fulfilling the deliverables stated submitted taking into consider | cond phas
ns encount
d in Gradua | e of th
tered of
ation F | during
Projec | the in | pleme
dissert | ntation
ation or | proces
the p | ss thus
roject i | | #### متطلبات البرنامج PROGRAM REQUIREMENTS | Catego | No. of courses | Course
Credit Hour | Total Credit
Hours | | |------------------------|---------------------|-----------------------|-----------------------|----| | | | 1 | 4 | 4 | | Discipline | core/ | 18 | 3 | 54 | | Requirements (DR) | compulsory | 3 | 2 | 6 | | | | 1 | 1 | 1 | | Total DR courses | | 23 | | 65 | | Program | core/
compulsory | 7 | 3 | 21 | | Requirement (PR) | Elective | 8 | 3 | 24 | | Total PR courses | | 15 | 3 | 45 | | Total Elective courses | 8 | 3 | 24 | | #### Discipline Requirements (DR) core/compulsory courses list | Code | Name | Credit
Hours | Pre-requisite | |---------|---|-----------------|----------------------| | CMPS102 | Programming Techniques | 3 | INTS005 | | CMPS103 | Data Structures and Algorithms | 3 | INTS005+
CMPS102 | | CMPS118 | Introduction to Logic Design | 3~ | INTS005 | | CVES125 | Civil Engineering \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | 2 | EMCS002 | | EECS102 | Circuits-1 | 3 | MTHS003 +
PHYS002 | | EECS112 | Circuits-2 | 3 | EECS102 +
MTHS102 | | EECS101 | Electronics-1: Basic Electronic Circuits | 3 | EECS102 +
PHYS102 | | EECS202 | Operational Amplifiers circuits and applications | 3 | EECS101 | | EECS203 | Signal Analysis | 3 | EECS102 +
MTHS102 | | EECS306 | Communications-1: Analogue Communications | 3 | MTHS204 +
EECS203 | | Code | Name | Credit
Hours | Pre-requisite | |---------|--|-----------------|-----------------------------| | EPES200 | Basic Laboratory | 2 | EECS102 | | EPES203 | Electromagnetic Fields | 3 | PHYS002+
MTHS104 | | EPES301 | Electrical Machines-1 | 3 | EPES203+
EECS112 | | EPES307 | Electrical Measurements | 3 | EPES200 | | EPES311 | Microprocessors Applications | 4 | EECS202 +
CMPS118 | | INTS125 | Introduction to Mechanical Ergineering | 3 | PHYS001 | | MEPS219 | Mechanical Power Engineering | 3 | INTS125 | | MTHS104 | Differential Equations | 3 | MTHS003 | | MTHS114 | Numerical Analysis | 3 | MTHS102 +
MTHS104 | | PHYS102 | Modern Physics | 3 | PHYS001 +
PHYS002 | | EEES280 | Engineering Seminar | 1 | 30 CR.HRS. +
AA Approval | | EEES381 | Industrial Training-2 | 2 | EEES281 + AA
Approval | | EEES482 | Graduation Project (2) | 3 | EPES481 | | Total | | 65 | | # Program Requirements (PR) core/compulsory courses list | Code | lized fracks of Engl | Credit
Hours | Pre-requisite | |---------|---------------------------|-----------------|-----------------| | EPES204 | Energy Conversion | 3 | PHYS002 | | EPES302 | Elements of Power Systems | 3 | EECS102 | | EPES304 | Electrical Machines-2 | 3 | EPES301 | | EPES306 | Power Electronics (1) | 3 | EECS202 | | EPES308 | Control Systems | 3 | MTHS104+EECS203 | | EPES402 | Power System Analysis | 3 | EPES302 | | EPES404 | Digital Control Systems | 3 | EPES308 | | Total | | 21 | | #### Program Requirements (PR) elective courses list | Code | Name | Credit
Hours | Pre-requisite | |----------|---|-----------------|-----------------------| | ELECTIV | E Courses Group A1 (EPES40X) | | | | EPES401 | Special Electrical Machines | 3 | EPES304+ AA Approval | | EPES403 | Power System Protection | 3 | EPES302+ AA Approval | | EPES405 | Power Electronics (2) | 3 | EPES306+ AA Approval | | EPES406 | High Voltage Engineering | 3 | EPES302 + EPES307 + | | 70.00 | | 3 | AA Approval | | ELECTIV | E Courses Group B1 (EPES40X) | | | | EPES407 | Digital Signal Processing Fundamentals | 3 | EECS203 + AA Approval | | EPES408 | Device design and Integration | 3 | EECS101 + AA Approval | | EPES409 | Fiber optics communication | 3 | EECS203 + AA approval | | EPES412 | Electrical Power Distribution | 3 | EPES403 + AA Approval | | ELECTIV | E Courses Group A2 (EPES4XX) | | A | | EPES411 | Power Quality | 3 | EPES302 + AA Approval | | EPES412 | Electrical Power Distribution | 3 | EPES403 + AA Approval | | EPES413 | Power Systems Economics | 3 | EPES302 + EPES308 + | | | 51 22 | - | AA Approval | | EPES414 | Smart Power Grid | 1113 | EECS306 + EPES302 + | | | | 1 | AA Approval | | EPES415 | Power System Planning | 3 | EPES302 + EPES308 + | | | | | AA Approval | | EDEC446 | Power Stations | 3 | MEPS219 + EPES204 + | | nani | 11700 Tracks of Fnoin | oorir | AA Approval | | | HIZUU HAUNS UL EHZIH | UUIII | MEPS219+ | | EPES417 | Renewable Energy Systems | 3 | EPES204+AA Approval | | EPES418 | Power System Switchgear | 3 | EPES403 + AA Approval | | EPES419 | Protection Systems and Digital Relaying | 3 | EPES403 + AA Approval | | | Electrical Machines Design | 3 | EPES304 + AA Approval | | EDEC424 | Electrical Machines Drives | 3 | EPES304 + EPES405 + | | EPE3421 | Electrical Machines Drives | 3 | AA Approval | | EDES433 | Electric Traction and Mobility Systems | 3 | EPES304 + EPES405 + | | | | 2500 | AA Approval | | EPES423 | Electrical Installation | 3 | EPES302 + AA Approval | | EPES424 | 2 32 W/ W 25 STREET TOO'S AT OR | 3 | EPES311 + EPES308 + | | LF L3424 | Introduction to Mechatronics | | AA Approval | | Code | Name | Credit
Hours | Pre-requisite | |----------|--|-----------------|------------------------------------| | EPES425 | Process Control and Robotics | 3 | EPES404 + AA Approval | | | Computer Control in Energy Systems | 3 | EPES311 + EPES404 +
AA Approval |
 EPES427 | Intelligent Control | 3 | EPES308 + AA Approval | | EPES428 | Power System Operation and Control | 3 | EPES402 + AA Approval | | EPES429 | Environmental Impact of Electricity | 3 | 70 CRH + AA approval | | EPES430 | Operations Research | 3 | 70 CRH + AA approval | | EPES431 | Electrical Generators for Renewable
Energy Applications | 3 | EPES304 + AA Approval | | EPES432 | Super Conductor Applications | 3 | EPES203 + AA Approval | | EPES433 | Power Electronics Applications in Power
Systems | 3 | EPES405 + AA Approval | | EPES434 | Embedded Systems Applications in
Power Electronics | 3 | EPES405 + AA Approval | | EPES435 | Power Electronics for electric vehicles | 3 | EPES405 + AA Approval | | EPES436 | Electrical Substations Design | 3 | EPES406 + AA Approval | | EPES437 | Special Topics in High Voltage
Engineering | _3 | EPES406 + AA Approval | | EPES438 | Energy Storage Systems | 1113 | EPES204 + AA Approval | | ELECTIVE | Courses Group B2 (EPES4XX) | 1 | | | EPES439 | Wireless Networking | 3 | EECS203 + AA approval | | EPES440 | Introduction to Digital Computer Architecture | 3 | EPES311 + AA approval | | EPES441 | Microcomputer structure and interfacing | oo3rir | EPES311 +AA approval | | EPES442 | Introduction to Digital Image Processing | U L3 | EECS203 + AA approval | | EPES443 | Digital Speech Processing | 3 | EECS203 + AA approval | | EPES444 | Biometric Systems | 3 | CMPS103 + AA approval | | EPES445 | Introduction to Microfabrication | 3 | EECS101 + AA Approval | The student of track A: (EEE-P) EEE-Power Systems, chooses three courses from group (A1), and five courses from group (A2), while student of track B: (EEE-I) EEE-Information Systems, chooses three courses from group (B1) and five courses from group (B2). Registration is subject to academic approval. يختار طالب المسار A: <u>EEE-Power Systems (EEE-P)</u> ثلاث مقررات من المجموعة (A1) وخمس مقررات من المجموعة (A2) ويختار طالب المسار B: <u>EEE-Information Systems (EEE-I)</u> ثلاث مقررات من المجموعة (B2) وخمس مقررات من المجموعة (B2) ويخضع التسجيل للموافقة الاكاديمية. ## Proposed Study Plan - 8 semesters - Including Freshman Level | | | | | | | Co | ntact I | Hours | S | | | |---------|---------|---|-----------------|-----|------------|---------|---------|-------|-----------|----------|-------| | s | Code | Name | Credit
Hours | Lec | Tut
(2) | App Tut | Lab | Stud | Off. Tut. | Off. Hrs | Total | | | PHYS001 | Mechanical Properties of
Matter and Thermodynamics | 3 | 2 | | 2 | 1 | | | | 5 | | - | MTHS002 | Calculus I | 3 | 2 | 2 | | | | | | 4 | | EMESTER | EMCS001 | Engineering Mechanics – Dynamics | 3 | 1 | 2 | | 1 | | | | 4 | | ES | CHES001 | Chemistry for Engineers | 2 | 1 | 2 | | | | | | 3 | | Σ | PHYS002 | Electricity and Magnetism | 3 | 2 | | 2, | 1 | | 1 | D. | 5 | | S | INTS005 | Information Technology | 2 | 1 | | 5,5 | 3 | [] | 1 | | 4 | | | GENS004 | Proficiency and Capacity Building | 1 | 1 | | 7. | 1 | | | | 1 | | | GENS001 | Critical and Creative Thinking | 2 | 2 | 1 | | | | 1 | 7 | 1 | | | | Sub-Total | 19 | 13 | 6 | 4 | 5 | 0 | 0 | 0 | 28 | | | | | 10 0 | | il. | Co | ntact | Hour | s | | | |----------|------------------|--|------|----|-------------|---------|-------|------|-----------|----------|-------| | s | Specia | cialized Tracks of | | 9 | 799
1799 | Tut day | Pap | of S | Off. Tut. | Off. Hrs | Total | | | MTHS003 | Calculus 2 | 3 | 2 | 2 | | | | | | 4 | | 2 | EMCS002 | Engineering Mechanics –
Statics | 2 | 1 | 2 | | | | | | 3 | | K | INTS001 | Engineering Graphics | 3 | 2 | | | | 3 | | | 5 | | SEMESTER | E-A
(GENS005) | Elective E-A (Writing and Presentation Skills) | 2 | 2 | 0 | | | | | | 2 | | Σ | PHYS102 | Modern Physics | 3 | 2 | | 2 | 1 | | , | | 5 | | S | CMPS118 | Introduction to Logic Design | 3 | 2 | 2 | | | | | | 4 | |) (S | INTS125 | Introduction to Mechanical
Engineering | 3 | 2 | | 2 | 1 | | | | 5 | | | | Sub-Total | 19 | 13 | 6 | 4 | 2 | 3 | 0 | 0 | 28 | | | | | | | | Cor | itact | Hour | s | 2 (4 | | |----------|---------|---|--------|-----|---|---------|-------|------|-----------|----------|-------| | S | Code | Name | Credit | рес | Tut
(2) | App Tut | Lab | Stud | Off. Tut. | Off. Hrs | Total | | 3 | MTHS102 | Linear Algebra and
Multivariable Integrals | 3 | 2 | 2 | | | | | | 4 | | R | CVES125 | Civil Engineering | 2 | 1 | 2 | | | | 0 | | 3 | | E | MTHS104 | Differential Equations | 3 | 2 | 2 | | | | 9 | | 4 | | SEMESTER | CMPS102 | Programming Techniques | 3 | 2 | | | 3 | | | | 5 | | N | EPES204 | Energy Conversion | 3 | 2 | 15 10 10 10 10 10 10 10 10 10 10 10 10 10 | 2 | 1 | | | | 5 | | S | EECS102 | Circuits-1 | 3 | 2 | | 2 | 1 | | | | 5 | | | GENS00X | Elective Course UR | 2 | 2 | | | | | | | 2 | | | | Sub-Total | 19 | 13 | 6 | 4 | 5 | 0 | 0 | 0 | 28 | | | | | | | | Co | ntact | Hour | s | | | |----------|--------------------|---|--------|-----|------------|---------|-------|------|----------|----------|-------| | s | Code | Name | Credit | Lec | Tut
(2) | App Tut | Lab | Stud | Off.Tut. | Off. Hrs | Total | | | EECS112 | Circuits-2 | 3 | 2 | | 2 | 1 | | | | 5 | | | EPES200 | Basic Laboratory | 2 | 1 | | | 3 | | | | 4 | | STER 4 | MTHS204
EECS203 | Advanced Probability and Statistics Signal Analysis | Fag | 2 | e²ir | 1g | Pro | fes | sic | n | 4 | | SEMESTER | EECS101 | Electronics-1: Basic
Electronic Circuits | 3 | 2 | 2 | | | | | | 4 | | 0, | GENS120 | Fundamentals of
Economics and Accounting | 2 | 2 | | | | | | | 2 | | | EPES203 | Electromagnetic Fields | 3 | 2 | 2 | | | • | | | 4 | | | | Sub-Total | 19 | 13 | 6 | 4 | 5 | 0 | 0 | 0 | 28 | | | | | | | | Co | ntac | t Hou | rs | | | |----------|---------|--|--------|-----|------------|---------|------|-------|-----------|----------|-------| | s | Code | Name | Credit | rec | Tut
(2) | App Tut | Lab | Stud | Off. Tut. | Off. Hrs | Total | | | EPES307 | Electrical Measurements | 3 | 2 | | 2 | 1 | | | | 5 | | | EEES280 | Engineering Seminar | 1 | 1 | | | | | | | 1 | | | EPES301 | Electrical Machines-1 | 3 | 2 | | 2 | 1 | | | | 5 | | FER 5 | EPES302 | Elements of Power
Systems | 3 | 2 | 2 | | | | | | 4 | | SEMESTER | CMPS103 | Data Structures & Algorithms | 3 | 2 | | | 3 | | | | 5 | | SE | EECS202 | Operational Amplifiers circuits and applications | 3 | 2 | | 1 | 1 | | | | 4 | | | MEPS219 | Mechanical Power
Engineering | 3 | 2 | 2 | 画 | | | | | 4 | | | | Sub-Total | 19 | 13 | 4 | 5 | 6 | 0 | 0 | 0 | 28 | | | | | | | | Co | ntaci | Hou | rs | | | |----------|---------|--|--------|-----|---------|------|-------|------|--------|----------|-------| | s | Code | Name S | Credit | rec | Tut (2) | App | Lab | Stud | • Off. | Off. Hrs | Total | | g | EPES311 | Microprocessors Applications | EI14gi | 3 | erii | 2 | 110 | IES. | SIU | | 6 | | SEMESTER | EECS306 | Communications-1:
Analogue Communications | 3 | 2 | | 2 | 1 | | | | 5 | | ES | MTHS114 | Numerical Analysis | 3 | 2 | 2 | ci . | | Ŷ | 5 8 | | 4 | | Σ | EPES304 | Electrical Machines-2 | 3 | 2 | | 2 | 1 | 1 | | | 5 | | S | EPES308 | Automatic Control Systems | 3 | 2 | | 2 | | Ĵ. | | | 4 | | | EPES306 | Power Electronics (1) | 3 | 2 | | 1 | 1 | J. | | | 4 | | | | Sub-Total | 19 | 13 | 2 | 9 | 4 | 0 | 0 | 0 | 28 | | | | | | | 30 30 | Co | ntact | Hou | rs | | | |----------|---------|---------------------------|--------|-----|------------|----------|-------|------|-----------|----------|-------| | s | Code | Name | Credit | Lec | Tut
(2) | App. Tut | Lab | Stud | Off. Tut. | Off. Hrs | Total | | 1 | EPES402 | Power System Analysis | 3 | 2 | 2 | | | | | | 4 | | 87 | EPES404 | Digital Control Systems | 3 | 2 | | 2 | 1 | | | | 5 | | 岜 | EPES40X | Elective Course (1) A1/B1 | 3 | 2 | | 2 | | | | | 4 | | S | EPES40X | Elective Course (2) A1/B1 | 3 | 2 | | 2 | | | | | 4 | | SEMESTER | EPES40X | Elective Course (3) A1/B1 | 3 | 2 | | 2 | | | | | 4 | | Ä | EPES4XX | Elective Course (1) A2/B2 | 3 | 2 | 4 | 2 | | | | =-0 | 4 | | 0) | EEES481 | Graduation Project (1) | 1 | 0 | 0 | | 3 | | | | 3 | | | | Sub-Total | 19 | 12 | 2 | 10 | 4 | 0 | 0 | 0 | 28 | | | | | | | | Co | ntac | t Hou | rs | 7 | | |----------|------------------|--|--------|-----|---------|----------|------|-------|-------------|----------|-------| | s | Code | Name | Credit | Lec | Tut (2) | App. Tut | Lab | Stud | Off.
Tuf | Off. Hrs | Total | | | EPES4XX | Elective Course (2) A2/B2 | 3 | 2 | | 2 | | | | | 4 | | | EPES4XX | Elective Course (3) A2/B2 | - 3 | 2 | | 2 | | | | | 4 | | 8 | EPES4XX | Elective Course (4) A2/B2 | - 3 | 2 | orin | 02 - | rn' | , DC | SIU | n | 4 | | Ü | EPES4XX | Elective Course (5) A2/B2 | 3 | 2 | 21111 | 2 | 10 | 00 | DIO | | 4 | | S | EEES482 | Graduation Project (2) | 3 | 1 | 34 | | 6 | | | | 7 | | SEMESTER | E-A
(GENS110) | Elective E-A (Fundamental of Management, Risk and Environment) | 2 | 2 | | | | | | | 2 | | | GENS3XX | Elective Course UR | 2 | 2 | | | | | | | 2 | | | | Sub-Total | 19 | 13 | 0 | 8 | 6 | 0 | 0 | 0 | 27 | # توصيف المقررات COURSES CONTENTS | 25.00 EV | | Credit | | | (| Conta | ct Ho | urs | | | |-------------|--|--|--------------------|-------------|---|-------------------|--------------------|-------------------|-------------|---------------| | Code | Name/Content | Hours | Lec | Tut
(2) | App
Tut | Lab | Stud | Off.
Tut | Off.
Hrs | Total | | Disciplin | e Requirements | | | | | 5 7 | | | | 0.00 | | CMPS102
| Programming Techniques | 3 | 2 | | | 3 | | | | 5 | | | Pre-requisites: INTS005 | | | | | | | | | | | | Introduction to software design
types and characteristics of tra-
oriented programming- introdu-
testing - documentation - num- | anslators -
action to pa | structi
arallel | ured progra | orograr
ammin | nming
g- prog | - function | on vers | us obj | ect- | | Textbook | -Programming and Problem S
Bartlett Learning, 2016.
-Programming: principles and | | | | *************************************** | 4 | | | | 2014. | | CMPS103 | Data Structures and
Algorithms | 3 | 2 | | / | 3 | 1 | | | 5 | | | Pre-requisites: INTS005+ CM | PS102 | | 5 | | 10 | | | | | | | Data types and representation
media and memory allocation
graphs - Hashing -searching, | linear list sorting alg | ts -sta
gorithn | cks - | queue:
d their | s - mer
analys | mory al | locatio
rammi | n - tree | es -
ject. | | Textbook Sp | * Data Abstraction & Problem
6th edition, Pearson Interna
Data Structures, A Pseudoc
Forouzan, second edition Tho | tional Edit
ode Appro | ion, A | ddiso | n Wes | ley , Co | opyrigh
Gilberg | t © 201
& Behr | 13
ouz A | | | CMPS118 | Introduction to Logic Design | 3 | 2 | 2 | | | | | | 4 | | | Pre-requisites: INTS005 | • | | | | | | | | | | | Number systems and data reg
functions - logic gates - comb | | | | | | | | | | | | and adders - Memory | | | 88 | | | | | | iters, | | | | Credit | | | (| Conta | ct Ho | urs | | | |----------|---|--|---|---|---|--|---|--|--|--| | Code | Name/Content | Hours | Lec | Tut
(2) | App
Tut | Lab | Stud | Off.
Tut | Off.
Hrs | Total | | CVES125 | Civil Engineering | 2 | 1 | 2 | | | | | | 3 | | | Pre-requisites: EMCS002 | 100 | | | | | | | | | | | Buildings: types of buildings materials with emphasis on co and pollution, Principles of f applications of surveying scienand engineering uses of applications of mapping, intellinternet resources. Structures forces, analysis of beams, fran | oncrete a
fire protences with
distance,
egrated distances:
Types | nd tes
ction,
emph
angle
igital :
of str | ting, i
tende
asis o
es ar
survey | insulater doc
on plan
od he
ying a | ion agument
ument
ie surv
ight d
nd ma | ainst he
Surve
eying,
ifference
pping | eat mo
eying:
Popula
ce me
using | Princip
Princip
r technological
easurer
total s | noise
oles 8
niques
ments
tation | | Textbook | Sheng-Taur Mau, Sami Maalor
Edition, 2014
Russell C. Hibbeler - Structura | uf, Introd | uction | | - | A | g, Revi | sed 1s | t ed. | | | EECS102 | Circuits-1 | 3 | 2 | | 2 | 711 | | | | 5 | | | Pre-requisites: MTHS003 + Ph | | | | / | | | | | | | | Analysis of resistive circuits to
with AC excitation in the time
Analysis of AC circuits using of
transfer –RLC circuits –Magne | domain -
circuit the | -Analy | sis of | AC ci | rcuits i | n the f
inalysis | requent
-Max | cy dor | main - | | Textbook | C. Alexander and M. Sadiku, F 2021. | undamer | ntal of | Electr | ric Circ | cuits, 7 | rth edition | on, Mc | | | | Cn | J. W. Nilson, and S.A. Riedel, | Electric C | | | Editio | | rson Ed | ducatio | n Limit | ted, | | EECS112 | Circuits-2/UU | 3 | 2 | III | 2 | 18 1 | 1101 | 422 | 1011 | 5 | | | | 1 | -0 | | 7/7 | | | | A CONTRACTOR OF THE PARTY TH | | | | Pre-requisites: EECS102 + MT | IHS102 | | | | | | | | | | | Pre-requisites: EECS102 + MT
Series and parallel resonant ci | | oplica | tion o | n pass | sive filt | ers – T | wo por | t circui | ts – | | | Series and parallel resonant ci
Fourier and harmonic analysis
Circuit synthesis – Synthesis of | ircuits – A
– Applica | ation o | f Lapl | | | | | | | | | | Credit | | | C | onta | ct Ho | urs | | | |---------------------|--|--|--|--|--|--|---|---|--|--| | Code | Name/Content | Hours | Lec | Tut
(2) | App
Tut | Lab | Stud | Off.
Tut | Off.
Hrs | Total | | EECS101 | Electronics-1: Basic
Electronic Circuits | 3 | 2 | 2 | | | | | 1 | 4 | | | Pre-requisites: EECS102 + PH Diode circuit applications – Bipola (MOST): physical structure, ba equivalent circuit - Biasing techni Load. | ar junction
sic confi
iques (cur | guratio
rent so | n, I-V
ource l | chara
biasing | acteristi
) – Sin | ics, bia
gle stag | sing -
e ampl | small
lifiers – | signal | | Textbook | Behzad Razvi, "Fundamenta Sedra and Smith, "Microelect | | | | | | | | | ress. | | EECS202 | Operational Amplifiers circuits and applications Pre-requisites: EECS101 | 3 | 2 | | 1 | 1 | | | | 4 | | Touthook | various output stages using Mo
amp circuit analysis, applicatio
differentiators, summers, differ
amplifiers, active rectifiers, con
filters). Non-ideal effects in op-
designs. Voltage regulators. | n circuits
ential am
nparators
amps an | (e.g.
plifiers
s, Schr
d effe | followers, pow
mitt tri
cts on | ers, an
er am
ggers,
perfor | nplifier
plifiers
relaxa
mance | s, integ
, instruition os
e. Multis | rators,
mental
cillator | tion
, and a | active | | Textbook
EECS203 | Paul Horowitz , Winfield Hill , T
Signal Analysis | ne Art or | 2 | onics | 2 | altion, | 2015 | | | 5 | | Sp | Pre-requisites: EECS102 + MT Continuous time and discrete to time Invariant Systems - The Fourier Series Representation C.T. Fourier Transform for per F.T The D.T. Fourier Transexponential and sinusoidal Afrequency Division Multiplexing - The sampling Theorem - The order hold - The Z Transform | time sign
e C.T ar
of C.T. a
iodic ard
sform –
Amplituce
g - Repre
e effect o | als and D.T. als aper Prope Modesenta | T. Peri
iodic s
erties
lulatio
ation o
er-sar | ems -
volutio
iodic S
signals
of D.T
n-Dem
f conti
mpling | n - Pr
ignals
- Pro
Four
nodulat
nuous
or alia | operties - Parse perties rier Tra ion for time si asing - | s of L
eval's r
of con
insform
Sinu-
gnal by
sampli | TI sys
relation
ntinuou
n - Co
soidal
y its sa
ing wit | Linear
tems -
n - The
is time
omplex
AM -
amples
h zero | | Textbook | A. V. Oppenheim, A. S. Willsky
Pearson Education Limited, 20
Luis
Chaparro, and Aydin Akar
Academic Press, Nov. 2018. | 14. | | | | | | | | on, | Textbook ### BYLAWS 2023 Bachelor of Science Degree Credit Hours System | | | Credit | | | C | onta | ct Ho | ırs | | | |----------|--|--|--|--|--|---|---|--|--|---| | Code | Name/Content | Hours | Lec | Tut
(2) | App
Tut | Lab | Stud | Off.
Tut | Off.
Hrs | Total | | EECS306 | Communications-1:
Analogue Communications | 3 | 2 | | 2 | 1 | | | | 5 | | | Pre-requisites: EECS203 + MT | THS204 | 75 | | | | | | | | | | All Types of AM (DSB-LO demodulators, adv. and disacchannel multiplexing and supangle modulated signals - Sp wide band FM (Indirect and lemphasis and pre-emphasis Sampling process – PAM – division multiplexing – Delta, a process – Stationary and efunctions – Power spectral derivations | dvSynch
berheters
ectrum so
Direct me
filtering
Quantiza
and adas
ergodic p | dyne f sinus ethods -comp ation (tive de | ation
receives
soidal
)-Demoatible
(unifor
elta m
ses - | circuits er -Ar signal nodula stere em and odulati - Mea | s - AM
ngle M
I (N.B
tion (si
tion - I
d non-
ion - I | I applion and W. lope de ntersystem. Differen | cations
on - N
B) - G
etector,
tem co
n) - F
tial PC | S: Tele
Narrow
Senera
PLL)
Ompari
PCM -
SM - ra | phone
band
tion o
- De
son -
Time
andon | | Textbook | B. Lathi, Modern Digital and Ar
Computer Engineering) 5th Ed | nalog Co | mmun | ication | (The | | | in Ele | ectrical | and | | EPES200 | Basic Laboratory Pre-requisites: EECS102 Basic circuit components (reinstruments such as multi-misimple electric circuits, Solder | sistors, of the eters and are eters and the eters and the eters are eters and the eters and the eters are at the eters are eters at the eters are eters at the eters are eters at the a | apacit
d osc
ompor | tors, i | nducto | ors, die | odes), | and d | ebugg | ing of | | Textbook | Simple electric/electronic circu N/A | it projects | 5 | | | | | | | | | EPES203 | Electromagnetic Fields Pre-requisites: MTHS104 + PH | | 12gi | 20 | erir | g F | rof | ess | ion | 4 | | | Electrostatic Fields: - Electric for Potential - Dielectric Materials Capacitance and capacitors - flux density - Ampere's Law & Dipoles & Scalar Magnetic Potenditions -Inductances and In Time varying Fields: Faraday's Electromagnetic Waves in difference of Potential Processing Fields: Faraday's Electromagnetic Waves in difference of Potential Processing Fields: Faraday's Electromagnetic Waves in difference of Potential Processing Fields: Faraday's Electromagnetic Waves in difference of Potential Processing Fields: Process | Electric E
Vector M
tential - V
nductors
s Law and | c flux of
nergy
agneti
lagnet
- Magr
d its ap | densite and for an and for an and for an and for an analysis analys | y – Bo
Forces
ential -
n & Ma
Energy
ions – | undary Magr Biot-S agnetic Mag Mag | condituetostat
Savart L
Materi
netic Fo
vell's Ec | ions –
ic Field
aw - M
als - Borces &
quatior | ds: Ma
lagnet
ounda
& Torq
is – | gnetic
ic
ry
ue | Andrew Zangwill, Modern Electrodynamics, 2013, 1st Edition | and M | App L | ntac | et Hou | urs | | | |--|---------------------------------------|---------------------------------
-----------------------------------|--------------------------------------|---------------------------------------|--| | and M | Action and Automatical Section 1997 | .ab | Stud | Off.
Tut | Off.
Hrs | Total | | ming i | 2 | 1 | | | | 6 | | ming i | | | | | | | | and Ir
and D//
gemen
ital pro | in C.
nterrup
A conv
nt, Ele | Mini
pt proversion
ectric | imum
ogram
on. Ser
Machi | syster
ming.
nsors a
ne Dri | m Har
Displa
and act
ives, E | dware
y and
uators
lectric | | Adam V
er, 202 | | s, Lo | gic Ga | ites, C | ircuits, | | | 2 | 2 1 | 1 | | - 3 | | 5 | | | Şii | 1 | 200 | | | | | ital mu
Analog
s – Pai
ments | g and [
artial di
- Elect | Digita
schar
troma | al Signa
rge det
agnetic | al Contection
field r | ditionin
– High
neters. | g -
1 | | asuren | nents a | and I | nstrum | entatio | on, McC | Graw | | asuren | TIII | y II | TOT | 622 | 1011 | 5 | | 1862 | | load | curren | t and in | nrush o | current
Parallel | | | 1 200 | rmers- No- | rmers- No-load | rmers- No-load curren | rmers- No-load current and in | on – equivalent circuit – Per Unit Sy
ormers– No-load current and inrush or
ransformer connection groups - P | | | | Credit | | | (| Conta | ct Ho | urs | | | | | |----------|--|--|---------------------------------|---|--|--|--|--------------------------------------|---|---|--|--| | Code | Name/Content | Hours | Lec | Tut
(2) | App
Tut | Lab | Stud | Off.
Tut | Off.
Hrs | Total | | | | INTS125 | Introduction to Mechanical
Engineering | 3 | 2 | 23300 | 2 | 1 | | | | 5 | | | | | Pre-requisites: PHYS001 | | | | | | | | | | | | | | Ideal gas properties; First law
thermodynamics and its app
Internal combustion engine
(Conduction, convection, and
the dynamics of machinery. I
brakes, pulleys, belts, chain
manufacturing engineering: ca | olications
s; Engineradiation
Power to
and sp | Che
ne pa
), Deg
ansmi | mical
arame
ree of
ssion
t, pov | equili
eters;
f freed
eleme
ver so | brium
Introd
om, M
nts: ge
rews. | of cor
uction
echanis
ears, s
Bearin | nbustio
to h
sms. Ir
hafts, | on rea
leat tr
ntroduc
clutche | ctions;
ransfer
tion to
es and | | | | Textbook | An Introduction to Mechanical | | | | | | | d K. L | ewis (2 | 016) | | | | MEPS219 | Mechanical Power
Engineering | | 1 | | 3 | A | | | | 4 | | | | | Pre-requisites: INTS125 | | | | | 41 | | | 10 | | | | | Textbook | Standard cycles of internal con
substances; Steam power plan
Combined cycles; Cogeneratio
Yunus A. Cengel, John Cimba
6th edition, 2021, McGraw-Hill | nts; Stand
on; Conce
ila, Afsh i | dard R
entration | ankine | e cycle
ar pow | ; Modi
er | fied Ra | nkine | cycles; | | | | | MTHS102 | Linear Algebra and Multivariable Integrals | 3 | 2 | 2 | 0 | | | | | 4 | | | | | | | | | | | | | _ | | | | | Sp | Pre-requisites: MTHS003 Solving Linear Systems, Vector Spaces and Subspaces, Inner Product Spaces and Orthonormal Bases, The Eigenvalue Problem; Diagonalization of Matrices, Computing Functions of Matrices. Functions of Several Variables, The Gradient of a Scalar Function and its Applications, Vector Fields, Curl and Divergence, Double and Triple Integrals with Applications, Line and Surface Integrals with Applications. | | | | | | | | | | | | | Textbook | | ntals", by | Jame | s Ste | wart, 8 | th edit | | | | arson | | | | | | Credit | | | (| Conta | ct Ho | urs | | | |----------|--|---|---|--|---|---|--|--|--|----------------------------| | Code | Name/Content | Hours | Lec | Tut
(2) | App
Tut | Lab | Stud | Off.
Tut | Off.
Hrs | Total | | MTHS104 | Differential Equations | 3 | 2 | 2 | | | | | | 4 | | | Pre-requisites: MTHS003 | | | | A- | | | | 20 2 | 505 | | | First-order differential equations; modeling with fi equations; method of undete higher order differential equations, shifting theorem using Laplace transform; Four | irst order
rmined co
ations; se
as, convo | r diffe
pefficient
eries s
lution | erentia
ents;
olutio | al equi
variations; La | ations;
on of p
place | ; highe
parame
transfo | er-orde
ters; n
rm; pr | r diffe
nodelin
opertie | rential
g with
s and | | Textbook | "A First Course in Differenti
Dennis G. Zill "Fundamentals of Differential
Snider "Advanced Engineering Mathe
Kreyszig. | al E <mark>quation</mark> | ons wit
s", 9th | Editio | n, 2017 | 7,by R. | Nagle, | Edwar | d Saff , | Arthur | | MTHS114 | Numerical Analysis | 3 | 2 | 2 | - 57 | 5 | | | | 4 | | | Pre-requisites: MTHS102 + M | THS104 | | | / | | 1 | | | | | Sp | Types of Errors. Linear system methods (Gauss-Seidle, SOR piecewise polynomial interpolar Nonlinear equations (Newton's Power Method and Power method and Power method). Initial value problems for Kutta method) and multistep problems. Solution of Partial Description. | R, etc). A
ation, splin
s method
thod with
a- Cotes to
or ordinal
redictor of
differential | pproxi
nes. D
and its
Deflat
ormula
by diffe
orrect
I Equa | mationiscretes discretes discrete disc | n of Fuel Leas rete values in solve ussian thods (using f | inction
t Squa
riants,
the Eig
quadr
tion: or
Adams
inite di | is: polyi
ires App
fixed p
gen Vali
rature ru
ne-step
s, Milne
ifferenc | nomial
proxim
oint ite
ue prol
ules, co
metho
e, etc | s and
ation.
eration)
blem.
ompos
ods (Ru
). Stiff
nod. | Ite
inge- | | Textbook | Numerical Methods for Engine
Canale. Publisher: McGraw Hi | | entri e | uition, | by Ste | even C | . Chapr | a and | Raymo | na P. | | PHYS102 | Modern Physics | 3 | 2 | | 2 | 1 | | | | 5 | | | Pre-requisites: PHYS001 + PH | | 2 2 | | | 70 Y | 50 | X1 | 70 | | | | Introduction to relativistic n | | | | | | | | | | | | Schrodinger Equation and son
- Energy states - Bonding in so
Band theory of solids - Metal
metals and semiconductors - I | olids, intro
ls, insulat | ductions ar | on to o | crystall
micono | ine pro
luctors | perties
- Elec | and N | filler in |
dices - | | Textbook | Modern Physics for Scientists
4 th edition, Cengage Learning, | and Engi | neers" | , Step | hen T | hornto | n, Andr | ew Re | x, | | | | | Credit | | | (| Conta | ct Ho | urs | | | |--|--|---|--|---|--|---|--|--|---|--| | Code | Name/Content | Hours | Lec | Tut
(2) | App
Tut | Lab | Stud | Off.
Tut | Off.
Hrs | Total | | Program | Requirements | W 2 | 310 | 2 38000 | 200 | 57 | 30 | | 75
76 | 375 | | EPES204 | Energy Conversion | 3 | 2 | | 2 | 1 | | | | 5 | | | Pre-requisites: PHYS002 | | | | | | | | | • | | | Energy sources (Depleted an development - energy utilization systems -fuels - energy convergence), Mechanical, Electric generating stations. | ion and greesion dev | owth ra | ates - | energy
ductio | reser
n of va | ve – ec
rious ty | onomi
pes of | cs of e
energ | у | | Textbook | George G.
Karady, Keith E. H
Interactive Computer-Based | AND THE RESERVE OF THE PERSON | | | | | on and | Transp | ort: Ar | n | | EPES302 | Elements of Power Systems | 3 | 2 | 2 | | | 1 | | | 4 | | | Pre-requisites: EECS102 | | | | | | | | | | | | Power Transformer Modelling | | | | | | | | Three | | | | Phase Connections – Regula
Unit Representation of Trans
Fault Analysis Model Simplific
during different fault condition | ting Trans
formers. S
cation – Fa
ns – DC cf | former
symme
ault Ca
fset Ca | rs for
trical
alculat
alcula | Voltag
Comp
tion As
tions o | e Mag
onents
sumpt
luring | nitude a
s. Short
sions – I
Short C | and An
Circuit
Fault C
ircuit. | Three
gle – F
Studie | e-
Per
es: | | Textbook | Phase Connections – Regula
Unit Representation of Trans
Fault Analysis Model Simplific
during different fault condition
Muhammad H. Rashid, Powe | ting Trans
formers. S
cation – Fa
ns – DC cf
r Electron | former
symme
ault Ca
fset Ca
ics Ha | rs for
trical
alculat
alcula | Voltage
Comp
tion As
tions o
ok, 3 rd | e Mag
onents
sumpt
luring | nitude a
s. Short
sions – I
Short C | and An
Circuit
Fault C
ircuit. | Three
gle – F
Studie | e-
Per
es:
tions | | Textbook
EPES304 | Phase Connections – Regula
Unit Representation of Trans
Fault Analysis Model Simplific
during different fault condition
Muhammad H. Rashid, Powe
Electrical Machines 2 | ting Trans
formers. S
cation – Fa
ns – DC cf | former
symme
ault Ca
fset Ca | rs for
trical
alculat
alcula | Voltag
Comp
tion As
tions o | e Mag
onents
sumpt
luring | nitude a
s. Short
sions – I
Short C | and An
Circuit
Fault C
ircuit. | Three
gle – F
Studie | e-
Per
es: | | and the second s | Phase Connections – Regula
Unit Representation of Trans
Fault Analysis Model Simplific
during different fault condition
Muhammad H. Rashid, Powe
Electrical Machines 2
Pre-requisites: EPES301 | ting Trans formers. S cation – Fa ns – DC cf r Electron 3 | former
symme
ault Ca
fset Ca
ics Ha
2 | rs for
trical
alculat
alcula
ndboo | Voltag
Comp
tion As
tions o
ok, 3 rd
2 | e Mag
onents
sumpt
during
Edition | nitude a
Short
ions – I
Short C
1, 2013 | and Ar
Circuit
Fault C
ircuit. | n Three
igle – F
t Studie
Calcular | e-
Per
es:
tions | | and the second s | Phase Connections – Regula Unit Representation of Trans Fault Analysis Model Simplific during different fault condition Muhammad H. Rashid, Powe Electrical Machines 2 Pre-requisites: EPES301 Three-phase induction motors | ting Trans formers. S cation – Fa ns – DC cf or Electron 3 s: Constru | former
symme
ault Ca
fset Ca
ics Ha
2
ction, | rs for
trical
alculat
alcula
ndboo | Voltag
Comp
tion As
tions c
ok, 3 rd
2 | e Mag
onents
sumpt
during
Edition
1 | nitude a
Short
ions – I
Short C
n, 2013
Torque | and Ar
Circuit
Fault C
ircuit. | n Three
ngle – F
t Studie
Calcular | e-
Per
es:
tions | | and the second s | Phase Connections – Regula Unit Representation of Trans Fault Analysis Model Simplific during different fault condition Muhammad H. Rashid, Powe Electrical Machines 2 Pre-requisites: EPES301 Three-phase induction motors characteristic, Testing, Perfor | ting Trans formers. S cation – Fa is – DC cf er Electron 3 s: Constru | former
symme
ault Ca
fset Ca
ics Ha
2
ction,
bading | rs for
trical
alculat
alcula
ndboo
Equiv
& Sta | Voltage Compliant Astrona Cook, 3rd 2 alent (ability, | e Mag
onents
sumpt
during
Edition
1
Circuit,
Modes | nitude a
Short C
Short C
n, 2013.
Torque
s of Ope | and Ar
Circuit
Fault Circuit. | Three agle – For Studie Calcular | e-
Per
es:
tions | | and the second s | Phase Connections – Regula Unit Representation of Trans Fault Analysis Model Simplific during different fault condition Muhammad H. Rashid, Powe Electrical Machines 2 Pre-requisites: EPES301 Three-phase induction motors | ting Trans formers. S cation – Fa ns – DC cf or Electron 3 s: Constru | former
symme
ault Ca
fset Ca
ics Ha
2
ction,
pading
ction, a | rs for
trical
alculat
alcula
ndboo
Equiv
& Sta | Voltage Compliant Astrons of 2 alent (ability, ations | e Mag
onents
sumpt
during
Edition
1
Circuit,
Modes
in elec | nitude a
Short cons – I
Short Con, 2013.
Torques of Operatrical tra | and Ar
Circuit
ault C
ircuit. | Three agle – For Studie Calcular | e-
Per
es:
tions | | and the second s | Phase Connections – Regula Unit Representation of Transfault Analysis Model Simplific during different fault condition Muhammad H. Rashid, Power Electrical Machines 2 Pre-requisites: EPES301 Three-phase induction motors characteristic, Testing, Perfor speed control and Braking, M | ting Trans formers. S cation – Fa is – DC cf er Electron 3 s: Constru mance, Lo totor Select c-phase ma s characte | former
symme
ault Ca
fset Ca
ics Ha
2
ction,
adding
ction, a
achine
eristics | rs for
strical
alculat
alcula
ndboo
Equiv
& Sta
applica
s, Con
on st | Voltage Compliant Astrons of Colors | e Mag
onents
sumpt
during
Edition
Circuit,
Modes
in election, TI
, Applic | Torque so of Operations. | and Ar
Circuit
Fault Circuit. | d
Starti
Single
ation, Enronous | e-
Per
es:
tions
5 | | EPES304 | Phase Connections – Regula Unit Representation of Trans Fault Analysis Model Simplific during different fault condition Muhammad H. Rashid, Powe Electrical Machines 2 Pre-requisites: EPES301 Three-phase induction motors characteristic, Testing, Perfor speed control and Braking, M Phase Induction Motors: Two of Main and Auxiliary winding | ting Trans formers. S cation – Fa is – DC cf er Electron 3 s: Constru- mance, Lo totor Select -phase ma s characte ace and T tage and s cating and | former
symme
ault Ca
fset Ca
ics Ha
ction,
adding
ction, a
achine
eristics
ime Pl
speed
Powe | rs for
strical
alculat
alculat
alculat
alculat
alculat
deposit
& Sta
applicat
s, Con
sta
hasor
Regulat | Voltage Compliant Astions of Astions of Astructions | e Mag
onents
sumpt
during
Edition
In
Circuit,
Modes
in election, TI
Applicam, Ch
Gener
Curve | Torque a cations. cat | e-spee
eration
f Operations
f Operations
odes of | Three agle – For Studie Calcular Starti Single ation, Enronous & Tests of Operation | e-
Per
es:
tions
5
ing,
e-
Effect
s,
ation, | | | | Credit Contact Hours | | | | | | | | | | |----------|--------------------------------|---|---------|------------
--|-------------------|--|-------------|-------------|---------|--| | Code | Name/Content | Hours | Lec | Tut
(2) | App
Tut | Lab | Stud | Off.
Tut | Off.
Hrs | Total | | | EPES306 | Power Electronics (1) | 3 | 2 | 20-122 | 1 | 1 | | | | 4 | | | | Pre-requisites: EECS202 | 11-00 | 200 | | A 244 10 | | | | | RUNCH . | | | | Power Semiconductor Devi | ces: (Pow | er Dic | des, F | Power B | JTs - | Thyristo | rs) Ba | sic Stru | ıcture | | | | - Output Characteristics. Re | ectifier Cir | cuits: | Analy | sis and | Design | of Sing | le-Pha | ase and | d | | | | Three-phase Rectifiers (Und | | | | | | | | | | | | | Thyristor Firing Circuits: An | | | | | | | | | | | | | Switching Converters (Buck | | | | | | | | | | | | | Different configuration of DO | | | | | | | | | | | | | speed control - sizing and d | | | | | | | | | | | | | machines - braking and rev | | | | | | - | | | | | | Textbook | | and the same of | | /loderr | | Electro | onics, 3 | rd Edit | ion, 20 | 1 | | | EPES308 | Automatic Control | 3 | 2 | | 2 | A | | - | | 4 | | | | Systems | | | | | | | | | | | | | Pre-requisites: MTHS104 + | THE RESIDENCE OF THE PERSON NAMED IN | | | | (11) | | | | | | | | This is a fundamental cours | | | | | | | | | | | | | completing this course, stud | | | | | | | | | /ariant | | | | systems in time and frequer | 7 C C C C C C C C C C C C C C C C C C C | | | | | | | | | | | | compensators and state fee | | | | | | | | Section 1 | | | | | specifications. The course s | Water Committee of the | | | | | | | | | | | | systems, transfer functions, | | | | | | | | | ent | | | | response, error analysis, sta | | | | | | | | | | | | | design, controllability, obser | | | | | | | | | AB. | | | Cn | Laboratory experiments on | the cours | e topic | S | agri | na | Irnt | 000 | inn | | | | Textbook | | | | ring, 8 | th Editio | on, 201 | 9101 | 500 | IUII | Τ. | | | EPES402 | Power System Analysis | 3 | 2 | 2 | | | | | | 4 | | | | Pre-requisites: EPES302 | | | | | | | | | | | | | Formation of Bus Admittano | | | | | | | | | | | | | Power System Graph – Inci | | | | | | | | | | | | | Formulation – Bus Loading | | | | | The second second | | | | | | | | Loss Calculations – Differer | | | | Contract of the th | | The second secon | | | | | | | Systems under Faults – Ma | | | | | | | | | | | | | Systems: Input-output Char | | | | | | | | | | | | | among Generators with and | | | | | | | | | nomic | | | T " . | Dispatch Problem. Swing ed | | | | | | | | | | | | Textbook | J. Duncan Glover, Mulukutla | a S. Sarm | a, Tho | omas (| Overbye | e, Powe | er Syste | m Ana | ilysis a | nd | | | | Design ,2017, 6th Edition | | | | | | | | | | | | | | Credit | | | C | ontac | t Hou | rs | | 11 | |-------------|--|---|--|---|---|--|---|---|---|-----------------------| | Code | Name/Content | Hours | Lec | Tut
(2) | App
Tut | Lab | Stud | Off.
Tut | Off.
Hrs | Total | | EPES404 | Digital Control Systems | 3 | 2 | _32m 144 | 2 | 1 | | | | 5 | | | Pre-requisites: EPES308 | 10-00 | | · · | 2 27-2 - 2 | 1 | | | | 10.00 | | | Sampling continuous-time s
block diagram simplification
designs, PID controllers, dig
state feedback, output feed
experiments on the course | , stability
gital filters
back, and | analys
, state | is, tra | nsforma
e model | ation te | chnique
rollabilit | s, con
y, obs |
npensa
ervabili | tor
ty, | | Textbook | Phillips, Nagle, and Chakr
2015 | | igital (| Contro | l Syster | m Analy | /sis & D | esign, | 4th Ec | lition, | | Elective Co | ourses | | | - | | | | 700 | | | | EPES401 | Special Electrical
Machines | 3 | 2 | | 2 | | | | | 4 | | | Pre-requisites: EPES304 + | AA Appro | val | | | 4 | | | 100 | • | | Textbook | Introduction to the unified the motors, permanent-magnet switched-reluctance motors motors, micro motors. Austin Hughes, Bill Drury, Editors and State Stat | brushless
, synchro | DC n | notors | , servo
nce mo | motors
tors, hy | , steppe
steresis | er moto | ors,
rs, line | ar | | EPES403 | Applications, 2019, 5th Edit | 3 | 2 | | 2 | | | | | 1 | | EPE3403 | Pre-requisites: EPES302 | 3 | 2 | | - 2 | | | | | 4 | | | Introduction to protective re | laving - P | ower s | vsten | hus co | nfigura | tions - I | Elemei | nts of a | | | Sp | protection system - Internat
Relay designs - Electro-me
circuits, Other types of faul
protection, Directional over-
Differential protection, Nega
voltage and phase rotation | ional prac
chanical r
ts) - Prote
current pr
ative phas | tices-
e ays
ction I
ctection
e unba | Relay
Fault
functi
on, Dir
alance | operations in Netrons: over one over over over one operation over over over one operation over over over over over over over over | ing prin
tworks
ver-curr
il earth
tion, Po | ciples -
and Ma
ent prot
fault pro
sitive s | Fault
chines
ection
otectio
equen | detecti
(Short
, Earth
n ,
ce und | on -
:-
n fault | | Textbook | Power System Protection a
Switchgear & Protection, by | nd Switch | | | | | | | | | | | | C | | | C | ontac | t Hou | rs | | -132 | |---------------------|--|--|--|---|--|--
--|-----------------------------------|--|--------------------| | Code | Name/Content | Credit
Hours | Lec | Tut
(2) | App
Tut | Lab | Stud | Off.
Tut | Off.
Hrs | Tota | | EPES405 | Power Electronics (2) | 3 | 2 | _ X2-1 XX | 2 | | | | | 4 | | | Pre-requisites: EPES306 | The Control | 2 20 10 | | | | | 10 0 | | 100 | | | Power Semiconductor De | | | | | | | | | | | | Characteristics, Switching | | | | | | | - | | er | | | Structure, Square Wave C | | | | | | | | | | | | Harmonics Control, Half B | | | | | | | | | | | | Techniques – PWM Harm | | | | | | | | | | | | Three-Phase Inverter Stru | | | | | | | | | | | | Conduction and PWM - A | | | | | | | | | | | | Power Electronics Circuits | | | Drives | - ACI | Jrives | viodeilin | g and | Contro | 01 - | | Textbook | Machine Drives Practical | | | londh | ook 2m | Edition | 2012 | | | | | EPES406 | Muhammad H. Rashid, Po | The second second second | onics r | Tantub | OOK, 3" | Edition | 1, 2013. | | | 4 | | EPE3400 | High Voltage Engineering
Pre-requisites: EPES302 | | 2 | Annea | Z | Sil | | | | 4 | | | Generation of AC, DC, an | | | | | ot and | adirost | motho | do of | | | | measuring high voltages - | | | | | | | | | | | | measuring mgm voltages | - Grounding | g syste | ms - | Types | of trans | mission | syster | m over | - | | | voltages – Travelling wave | | | | | | | | | | | | voltages – Travelling wave
Classification, construction | es along ov
n, and spec | erhead
ification | d trans | smission | n lines | and und | lergrou | and cal | oles - | | | voltages – Travelling wave
Classification, construction
insulated substations and | es along ov
n, and spec
switchgear | erhead
ilicatio | d trans | mission
underg | n lines
round h | and und
high volt | lergrou
age ca | and cal | oles - | | Textbook | voltages – Travelling wave
Classification, construction | es along ov
n, and spec
switchgear | erhead
ilicatio | d trans | mission
underg | n lines
round h | and und
high volt | lergrou
age ca | and cal | oles - | | | voltages – Travelling wave
Classification, construction
insulated substations and
"High Voltage Engineering | es along ov
n, and spec
switchgear
g" M S Naid | erhead
ilicatio | d trans | smission
underg
naraju. | n lines
round h | and und
high volt | lergrou
age ca | and cal | oles -
Gas- | | Textbook
EPES407 | voltages – Travelling wave Classification, construction insulated substations and "High Voltage Engineering Digital Signal Processing Control of the | es along ov
n, and spec
switchgear
g" M S Naid | erhead
ilicatio | d trans | mission
underg | n lines
round h | and und
high volt
tion 201 | lergrou
age ca | and cal | oles - | | | voltages – Travelling wave
Classification, construction
insulated substations and
"High Voltage Engineering
Digital Signal Processing
Fundamentals | es along over
n, and species
switchgear
g" M S Naid | erhead
inication
u and | d trans | smission
underg
naraju. | n lines
round h | and und
high volt | lergrou
age ca | and cal | oles -
Gas- | | | voltages – Travelling wave Classification, construction insulated substations and "High Voltage Engineering Digital Signal Processin Fundamentals Pre-requisites: EECS203 | es along over
n, and speci
switchgear
g M S Naid
g 3 | erhead
inication
u and | d trans | emission
undergi
naraju. | n lines
round h
5th edi | and und
high volt
tion 201 | lergrou
age ca | ind cal | oles -
Gas- | | | voltages – Travelling wave Classification, construction insulated substations and "High Voltage Engineering Digital Signal Processin Fundamentals Pre-requisites: EECS203 Theories, techniques, and p | es along over, and spectors witchgear of M S Naid | erhead
initication
u and
2
oval | d trans
ons of
V Kar
halysis | smission
undergi
naraju.
2 | n lines
round h
5th edi | and und
high volt
tion 201 | age ca | ables - | oles -
Gas- | | | voltages – Travelling wave Classification, construction insulated substations and "High Voltage Engineering Digital Signal Processin Fundamentals Pre-requisites: EECS203 Theories, techniques, and p sampled data filters. Algorith | es along over, and spectors witchgear of MS Naid of S Na | u and 2 val ed in an | d trans ons of V Kar halysis | mission
underginaraju. 2 design | on lines
round h
5th edi
, and im
or softw | and und
high volt
tion 201 | age ca
3
ation o | ables - | oles -
Gas- | | EPES407 | voltages – Travelling wave Classification, construction insulated substations and "High Voltage Engineering Digital Signal Processin Fundamentals Pre-requisites: EECS203 Theories, techniques, and posampled data filters. Algorith sampled data realizations, s | es along over and specific switchgear and specific specif | erhead
initication
u and
2
val
ed in an
acitor a | d trans ons of V Kar halysis prograind cha | naraju. 2 design | on lines
round h
5th edi
, and im
or softw | and und
high volt
tion 201 | age ca
3
ation o | ables - | oles -
Gas- | | EPES407 Sp | voltages – Travelling wave Classification, construction insulated substations and "High Voltage Engineering Digital Signal Processin Fundamentals Pre-requisitest EECS203 Theories, techniques, and p sampled data filters. Algorith sampled data realizations, semmanuel Ifeachor, Digital Classification in the control of | es along over and specific switchgear of the specific spe | erhead
initication
u and
2
val
ed in an
acitor a | d trans ons of V Kar halysis prograind cha | maraju. 2 design | on lines
round h
5th edi
, and im
or softw | and und
high volt
tion 201 | age ca
3
ation o | ables - | oles -
Gas- | | EPES407 Sp | voltages – Travelling wave Classification, construction insulated substations and "High Voltage Engineering Digital Signal Processing Fundamentals Pre-requisites: EECS203 Theories, techniques, and particular sampled data filters. Algorith sampled data realizations, semmanuel Ifeachor, Digital Device design and particular samples of the control th | es along over and specific switchgear of the specific spe | erhead
u and
2
val
ed in ar
nouter p
actor a | d trans ons of V Kar halysis prograind cha | naraju. 2 design | on lines
round h
5th edi
, and im
or softw | and und
high volt
tion 201 | age ca
3
ation o | ables - | Gas- | | | voltages – Travelling wave Classification, construction insulated substations and "High Voltage Engineering Digital Signal Processin Fundamentals Pre-requisites: EECS203 Theories, techniques, and posampled data filters. Algorith sampled data realizations, so Emmanuel Ifeachor, Digital Device design and Integration | es along over and specific switchgear of M S Naid of N | erhead
initication
u and
2
val
ed in arr
puter pacitor a
ocessi | d trans ons of V Kar halysis prograind cha | maraju. 2 design | on lines
round h
5th edi
, and im
or softw | and und
high volt
tion 201 | age ca
3
ation o | ables - | Gas- | | EPES407 Sp Textbook | voltages – Travelling wave Classification, construction insulated substations and "High Voltage Engineering Digital Signal Processin Fundamentals Pre-requisites: EECS203 Theories, techniques, and placed data filters. Algorith sampled data realizations, semmanuel Ifeachor, Digital Device design and Integration Pre-requisites: EECS101 | es along over and specific switchgear of the specific spe | erhead
u and
2
val
ed in an
ocessi
2 | d trans ons of V Kar V Kar halysis orograi nd cha | maraju. 2 design mming frarge-cou | ound h | and und
high volt
tion 201 | age ca
3
ation o | ables - |
d and and | | EPES407 Sp | voltages – Travelling wave Classification, construction insulated substations and "High Voltage Engineering Digital Signal Processin Fundamentals Pre-requisites: EECS203 Theories, techniques, and posampled data filters. Algorith sampled data realizations, so Emmanuel Ifeachor, Digital Device design and Integration | es along over and specific switchgear of the specific spe | erhead
u and
2
val
ed in an
ocessi
2
val
erials, | trans ons of V Kar V Kar halysis brograi nd cha ng, 20 | maraju. 2 design mming for arge-county 2 | th edition of software of software of software of the software of | and und
high volt
tion 201 | age ca
3
ation ozation. | ind cal
ables - | dand and and ions, | | EPES407 Sp | voltages – Travelling wave Classification, construction insulated substations and "High Voltage Engineering Digital Signal Processing Fundamentals Pre-requisites: EECS203 Theories, techniques, and particular sampled data filters. Algorith sampled data realizations, semmanuel Ifeachor, Digital Device design and Integration Pre-requisites: EECS101 Fundamentals of semicon | as along over, and spectors witchgear of the spectors and community and signal Productor materials. The spectors are specifically as a specific spe | erhead
u and
2
val
ed in an
ocessi
2
val
erials, | trans ons of V Kar V Kar halysis brograi nd cha ng, 20 | maraju. 2 design mming for arge-county 2 | th edition of software of software of software of the software of | and und
high volt
tion 201 | age ca
3
ation ozation. | ind cal
ables - | dand and and ions, | | EPES407 Sp | voltages – Travelling wave Classification, construction insulated substations and "High Voltage Engineering Digital Signal Processin Fundamentals Pre-requisites: EECS203 Theories, techniques, and p sampled data filters. Algorith sampled data realizations, s Emmanuel Ifeachor, Digital Device design an Integration Pre-requisites: EECS101 Fundamentals of semicon JFET's, MESFET's, MOSI | es along over and specific switchgear of the specific spe | erhead
u and
2
val
ed in ar
nouter p
acitor a
ocessi
2
val
erials,
sical de | d trans ons of V Kar V Kar Palysis orogra ond cha ong, 20 p-n ju evice o | naraju. 2 design mming frarge-county 2 nctions, design, | to lines fround he found fo | and undaligh voltation 201 plementare realization in the service IC's service is servic | age ca
3
ation o
zation. | ind cal
ables -
f digital
Digital | dand and ions, | | | | Cradit | | | C | ontac | t Hou | rs | | | |---------------------|---|--|---|------------------------------------|---|---|---|-------------------------|-------------|---------| | Code | Name/Content | Credit
Hours | Lec | Tut
(2) | App
Tut | Lab | Stud | Off.
Tut | Off.
Hrs | Total | | EPES409 | Fiber optics communication | 3 | 2 | | 2 | | | | | 4 | | | Pre-requisites: EECS203 -
Fundamentals of optics ar
wave guides, light sources | nd light wav
and light o | e prop | ors, co | uplers, | connec | | | | | | | modulation noise and dete | | | | | | | | | | | Textbook | Govind P. Agrawal, Fiber- | | runica | ation S | Systems | 5, 5th E | dition, 2 | 021. | | - 5 | | EPES411 | Power Quality | 3 | 2 | | 2 | | | | | 4 | | | Pre-requisites: EPES302 - | + AA Appro | val | | | | | | | | | | reliability systems includin
mitigation devices - On-sit
Measurement and mitigati
standards | e surveys on
on techniqu | of pow
ues - II | er qua | ality - A
EC Sta | systen
ndards | approa | ach to | ground | | | Textbook | Surya Santoso , Fundame | ntals Of Ele | ectric (| Power | Quality | , 2010 | | | | 001 | | EPES412 | Electrical Power Distribution | 3 | 2 | | 2 | | | | | 4 | | | Pre-requisites: EPES403 - | + AA Appro | val | | | | | | | | | Cn | Components of distribution distribution lines and distri | | | | | | | | | | | 9h | distribution - voltage drop
distribution systems- Distri | and power ibution eco | loss c | alcula
s- Mar | tions - v
nageme | oltage
ent syst | regulati | on cor | | n | | Textbook | distribution - voltage drop | and power ibution eco | loss c | alcula
s- Mar | tions - v
nageme | oltage
ent syst | regulati | on cor | | n | | Textbook
EPES413 | distribution - voltage drop
distribution systems- Distri | and power
ibution eco
ver Distribu | loss c | alcula
s- Mar | tions - v
nageme | oltage
ent syst | regulati | on cor | | n 4 | | | distribution - voltage drop
distribution systems- Distri
Turan Gonen, Electric Pov
Power Systems
Economics | and power
ibution eco
ver Distribu | nomics
ton E | alcula
s- Mar
ngine | nageme
ering, 20 | oltage
ent syst | regulati | on cor | | | | | distribution - voltage drop
distribution systems- Distri
Turan Gonen, Electric Pov
Power Systems
Economics
Pre-requisites: EPES302 | and power
ibution eco
ver Distribu
s 3
+ EPES308 | ton E | alcula
s- Mar
ngine
Appro | ageme
ering, 20
2
oval | oltage
ent syst
014 | regulati
em (DM | on cor
S). | ncepts | 4 | | | distribution - voltage drop
distribution systems- Distri
Turan Gonen, Electric Pov
Power Systems
Economics
Pre-requisites: EPES302 -
Basics of power system ed
the Consumers and Produ | and power ibution ecover Distribution 3 + EPES308 conomics – acers - Electrical | t on E 3 + AA Dema tricity | Appro | tions - v
nageme
ering, 20
2
oval
de mana
- power | oltage
ent syste
014
agemei
pools | regulati
em (DM
nt altern
- Transi | on cor
S).
atives | - Mod | 4 eling | | | distribution - voltage drop distribution systems- Distri Turan Gonen, Electric Pov Power Systems Economics Pre-requisites: EPES302 - Basics of power system economics | and power ibution economics — 3 + EPES308 conomics — icers - Electower Systems | t on E 2 3 + AA Dema tricity The properties of | Appro | tions - v
nageme
ering, 20
2
oval
de mana
- power | oltage
ent syste
014
agemei
pools | regulati
em (DM
nt altern
- Transi | on cor
S).
atives | - Mod | 4 eling | | Code | | tent Credit Lec Tut App Off. | | | | | | | | | |---------------------|---|---
--|--|---|---|--|-----------------------------------|--|----------------------| | Code | Name/Content | Hours | Lec | Tut
(2) | App
Tut | Lab | Stud | Off.
Tut | Off.
Hrs | Total | | EPES414 | Smart Grids | 3 | 2 | | 2 | | | | | 4 | | | Pre-requisites: EECS306 + | EPES302 | + AA | Appro | oval | | | | | N. Carlo | | | Benefits and definitions rela | ting to Sn | nart G | rids - | Electric | power | regulati | ion an | d tariffs | ; – | | | Load management - Peak | power cur | tailme | nt (lev | eling) - | Power | network | c intere | connec | tion - | | | Remote area generation an | | | | | | | | | | | | Automation and monitoring | | | | | | | | | | | | (PLC) and Broad-band over | | | | | | | | | ers – | | | Load control switches - Inte | | | veen p | ower g | rids - T | he inter | nation | al | | | | perspective [Europe's Supe | | | | ., | | | | | | | Textbook | James Momoh, Smart Grid | Fundame | entals | of Des | sign and | Analy | sis 1st E | dition | , Wiley | , | | EDECLIE | 2012 | | | | | | | | | Τ. | | EPES415 | Power System Planning | 3 | 2 | | 2 | L . | | | | 4 | | | Pre-requisites: EPES302 + | | | | | | | | Towns. | | | | Demand Side Management | | | | | | | | | | | | Resource Planning - Invest | ment Anal | ysis - | Load | Informa | tion and | | | | of | | | 1 - 15 - 11 | | | | | | | - | 40000000 | | | | Load Forecasting- Regulato | | | | | | ble Ene | ergy Te | echnolo | | | T | - Transmission Expansion | ory and Ma | a ket C | Constr | aints - F | Renewa | | 2000 | | | | Textbook | Transmission Expansion Fawwaz Elkarmi, Nazih Abi | ory and Ma | Powe | Constr
er Sys | aints - F | Renewa | echnol | 2000 | | | | | - Transmission Expansion
Fawwaz Elkarmi, Nazih Abi
Applications: Concepts, So | ory and Ma | Powe | Constr
er Sys | aints - F | Renewa | echnol | 2000 | | ogies | | Textbook
EPES416 | Transmission Expansion Fawwaz Elkarmi, Nazih Abi
Applications: Concepts, Sol
Power Stations | Shikhah
utions and
3 | Power Man | constr
er Sys
ageme | tem Pla
ent, 1st | Renewa | echnol | 2000 | | | | | - Transmission Expansion Fawwaz Elkarmi, Nazih Abi Applications: Concepts, Sol Power Stations Pre-requisites: MEPS219 + | ory and Ma
u Shikhah
utions and
3
EPES204 | Power Mans | er Sys
ageme | tem Pla
ent, 1st
2
oval | Renewa
nning T
Edition | echnolo
, 20 12 | ogies a | and | ogies 4 | | | - Transmission Expansion Fawwaz Elkarmi, Nazih Abi Applications: Concepts, Sol Power Stations Pre-requisites: MEPS219 + Electric Energy Demand- E | Shikhah
utions and
3
EPES204
lectric Ene | Power American | er Sys
ageme | tem Pla
ent, 1st
2
oval
s- Powe | nning 7
Edition | echnolo
, 2012 | ogies a | and
Selection | ogies 4 | | | - Transmission Expansion Fawwaz Elkarmi, Nazih Abi Applications: Concepts, Sol Power Stations Pre-requisites: MEPS219 + Electric Energy Demand- E Plant Location and Size- Ge | Shikhah
utions and
3
EPES204
lectric End
as Turbine | Power American | er Sys
ageme
Apprource: | tem Pla
ent, 1st
2
oval
s- Powe | nning 7
Edition
er Plant
lectric | Econor | nics- S | Selection | ogies 4 | | | - Transmission Expansion Fawwaz Elkarmi, Nazih Abi Applications: Concepts, Sol Power Stations Pre-requisites: MEPS219 + Electric Energy Demand- E Plant Location and Size- Ga Stations- Economic Operati | ory and Ma
u Shikhah
utions and
3
EPES204
lectric End
as Turbine
on of Stea | Powed Man | er Sys
ageme
Apprource: | tem Pla
ent, 1st
2
oval
s- Powe | nning 7
Edition
er Plant
lectric | Econor | nics- S | Selection | ogies 4 | | EPES416 | - Transmission Expansion Fawwaz Elkarmi, Nazih Abi Applications: Concepts, Sol Power Stations Pre-requisites: MEPS219 + Electric Energy Demand- E Plant Location and Size- Ga Stations- Economic Operati Electrical Equipment in Pow | Shikhah
utions and
3
EPES204
lectric End
as Turbine
on of Stea
ver Plants | Power of Mans
A Handard A | er Sys
agemo
Appro
ource
mal, I | tem Pla
ent, 1st
2
oval
s- Powe
Hydro-E | nning 7
Edition
er Plant
lectric a | Econor
and Nuc
Coordin | mics- Solear P | Selection
Selection
Sower
Major | ogies 4 | | Sp
Textbook | - Transmission Expansion Fawwaz Elkarmi, Nazih Abi Applications: Concepts, Sol Power Stations Pre-requisites: MEPS219 + Electric Energy Demand- E Plant Location and Size- Ga Stations- Economic Operati Electrical Equipment in Pow S. Sivanagaraju, D. Srilatha | Shikhah utions and 3 EPES204 lectric End as Turbine on of Steamer Plants | Powed Mans
A HAA
Prgy S
Ther
am Pla | er Sys
agemo
Appro
ource
mal, I | tem Pla
ent, 1st
2
oval
s- Powe
Hydro-Elydro-Ti | nning 7
Edition
er Plant
lectric a | Econor
and Nuc
Coordin | mics- Solear P | Selection
Selection
Sower
Major | 4 on of | | | - Transmission Expansion Fawwaz Elkarmi, Nazih Abi Applications: Concepts, Sol Power Stations Pre-requisites: MEPS219 + Electric Energy Demand- E Plant Location and Size- Ga Stations- Economic Operati Electrical Equipment in Pow S. Sivanagaraju, D. Srilatha Renewable Energy | Shikhah utions and 3 EPES204 lectric End as Turbine on of Steamer Plants | Power of Mans
A Handard A | er Sys
agemo
Appro
ource
mal, I | tem Pla
ent, 1st
2
oval
s- Powe
Hydro-E | nning 7
Edition
er Plant
lectric
a | Econor
and Nuc
Coordin | mics- Solear P | Selection
Selection
Sower
Major | ogies 4 | | Sp
Textbook | - Transmission Expansion Fawwaz Elkarmi, Nazih Abi Applications: Concepts, Sol Power Stations Pre-requisites: MEPS219 + Electric Energy Demand- E Plant Location and Size- Ga Stations- Economic Operati Electrical Equipment in Pow S. Sivanagaraju, D. Srilatha Renewable Energy Systems | Shikhah
utions and
3
EPES204
lectric End
as Turbine
on of Stea
ver Plants
, Generat
3 | Powed Manager State Stat | er Sys
agemo
Appro
ource
mal, I
ints- H | tem Pla
ent, 1st
2
oval
s- Powe
lydro-E
lydro-Tl
zation o | nning 7
Edition
er Plant
lectric a | Econor
and Nuc
Coordin | mics- Solear P | Selection
Selection
Sower
Major | 4 on of | | Sp
Textbook | - Transmission Expansion Fawwaz Elkarmi, Nazih Abi Applications: Concepts, Sol Power Stations Pre-requisites: MEPS219 + Electric Energy Demand- E Plant Location and Size- Ga Stations- Economic Operati Electrical Equipment in Pow S. Sivanagaraju, D. Srilatha Renewable Energy Systems Pre-requisites: MEPS219 + | Shikhah utions and 3 EPES204 lectric End as Turbine on of Steamer Plants I, Generating | Powed Mans
2
1 + AA
ergy S
There am Pla
ion an
2 | Appro
Appro
Appro
Appro | tem Pla
ent, 1st
2
oval
s- Powe
Hydro-E
Hydro-Ti
zation o | nning T
Edition
or Plant
lectric a
nermal | Econor
and Nuc
Coordin | nics- Solear Plation- | Selection
Selection
Sower
Major
2010 | 4 on of | | Sp
Textbook | - Transmission Expansion Fawwaz Elkarmi, Nazih Abi Applications: Concepts, Sol Power Stations Pre-requisites: MEPS219 + Electric Energy Demand- E Plant Location and Size- Ga Stations- Economic Operati Electrical Equipment in Pow S. Sivanagaraju, D. Srilatha Renewable Energy Systems Pre-requisites: MEPS219 + Sources of renewable energy | Shikhah utions and 3 EPES204 lectric End on of Steamer Plants p. Generat 3 EPES204 gy - Funda | Powed Mania 2 4 + AA ergy S There ion an 2 4 + AA amenta | Approals of | tem Pla
ent, 1st
2
oval
s- Powe
Hydro-E
Hydro-TI
zation o
2 | nning T
Edition
er Plant
lectric a
nermal | Econor
and Nuc
Coordinated End | nics- Sclear Phation-
ergy, 2 | Selection of the select | 4 on of | | Sp
Textbook | - Transmission Expansion Fawwaz Elkarmi, Nazih Abi Applications: Concepts, Sol Power Stations Pre-requisites: MEPS219 + Electric Energy Demand- E Plant Location and Size- Ga Stations- Economic Operati Electrical Equipment in Pow S. Sivanagaraju, D. Srilatha Renewable Energy Systems Pre-requisites: MEPS219 + Sources of renewable energy thermal energy, geotherma | Shikhah
utions and
3
EPES204
lectric End
as Turbine
on of Stea
ver Plants
, Generat
3
EPES204
gy - Funda
energy - | Powed Manager State And Plant | Approals of voltaic | tem Pla ent, 1st 2 oval s- Powe lydro-E lydro-Ti zation o 2 oval : wind e | nning T
Edition
er Plant
lectric a
nermal
of Electronermal
nergy,
s - hyd | Econor
and Nuc
Coordir
rical Ene | mics- Solear Plation-
ergy, 2 | Selection
Sower
Major
2010 | 4 on of olar- | | Sp
Textbook | - Transmission Expansion Fawwaz Elkarmi, Nazih Abi Applications: Concepts, Sol Power Stations Pre-requisites: MEPS219 + Electric Energy Demand- E Plant Location and Size- Ga Stations- Economic Operati Electrical Equipment in Pov S. Sivanagaraju, D. Srilatha Renewable Energy Systems Pre-requisites: MEPS219 + Sources of renewable energy thermal energy, geothermal electrical renewable general | Shikhah utions and 3 EPES204 lectric Endors Turbine on of Steamer Plants Generation September 1 EPES204 gy - Fundation scheme | Powed Mania 2 1 + AA ergy S Therefore Plan 1 + AA amenta chotomes - | Approals of voltaic | tem Pla
ent, 1st
2
oval
s- Power
Hydro-Ti
zation of
2
oval
: wind e | nning T
Edition
er Plant
lectric a
hermal
of Electric
nergy,
s - hyd
sizing | Econor
and Nuc
Coordin
rical End | mics- Sclear Plation-
ergy, 2 | Selection Major Ma | 4 on of olar-nents - | | Sp
Textbook | - Transmission Expansion Fawwaz Elkarmi, Nazih Abi Applications: Concepts, Sol Power Stations Pre-requisites: MEPS219 + Electric Energy Demand- E Plant Location and Size- Ga Stations- Economic Operati Electrical Equipment in Pow S. Sivanagaraju, D. Srilatha Renewable Energy Systems Pre-requisites: MEPS219 + Sources of renewable energy thermal energy, geothermal electrical renewable general Detailed design of a typical | Shikhah utions and 3 EPES204 lectric End as Turbine on of Steamer Plants and 3 EPES204 gy - Funda energy - ution scher photovolta | Powed Mania 2 1 + AA ergy S There ion an 2 1 +AA amenta chotomes - a c inv | Approals of voltaic series | tem Pla
ent, 1st
2
oval
s- Power
Hydro-Ti
zation of
2
oval
: wind e | nning T
Edition
er Plant
lectric a
hermal
of Electric
nergy,
s - hyd
sizing | Econor
and Nuc
Coordin
rical End | mics- Sclear Plation-
ergy, 2 | Selection Major Ma | 4 on of olar-nents - | | Sp
Textbook | - Transmission Expansion Fawwaz Elkarmi, Nazih Abi Applications: Concepts, Sol Power Stations Pre-requisites: MEPS219 + Electric Energy Demand- E Plant Location and Size- Ga Stations- Economic Operati Electrical Equipment in Pov S. Sivanagaraju, D. Srilatha Renewable Energy Systems Pre-requisites: MEPS219 + Sources of renewable energy thermal energy, geothermal electrical renewable general | Shikhah utions and 3 EPES204 lectric End on of Steaver Plants , Generat 3 EPES204 gy - Funda energy - ution scher photovolta connected | Powed Mana
2
4 + AA
ergy S
Ther
am Pla
ion an
2
4 +AA
amenta
photomes -
a c inversed powed | Approals of voltaic Selectiver | tem Pla ent, 1st 2 oval s- Powe Hydro-E Hydro-TI zation o 2 oval : wind e source tion and oattery s | nning T
Edition
er Plant
lectric a
nermal
of Electric
sermal
of Electric
sermal | Econor
and Nuc
Coordin
rical End
tidal wa
ro and coof syste | mics- Solear Praction-
ergy, 2 | Selection
Fower
Major
2010 | 4 on of olar-nents - | | | | Credit | | | C | ontac | t Hou | rs | | | |----------|---|------------------------------------|----------------------------|------------|--------------------------------|----------------------|----------------------|---------------------|---------------|----------------| | Code | Name/Content | Hours | Lec | Tut
(2) | App
Tut | Lab | Stud | Off.
Tut | Off.
Hrs | Tota | | EPES418 | Power System Switchgear | 3 | 2 | X2= 824 | 2 | | | | | 4 | | | Pre-requisites: EPES403 + / | AA Appro | val | | 2 72 - 3 | | | | | ((CATE) | | | Substation components - Dir
Voltage, and High Voltage a
installations - Types of circu
- Surge arresters- Compact
transients - fast transients in | pparatus
uit breake
Switchge | – Con
rs – C
ear – N | ircuit to | r materi
oreakers
Techno | ials – A
s rating | s - Arc | ries for
extinct | r switch | ngear
thods | | Textbook | transients – fast transients in GIS – Controlled switching Power System Protection and Switchgear, McGraw-Hill Education, 2010. Switchgear & Protetion, by J.B Gupta – 2019 | | | | | | | | | | | EPES419 | Protection Systems and
Digital Relaying
Pre-requisites: EPES403 +A | 3 | 2 | | 2 | | | | | 4 | | | Distance protection - Monito
analysis, Synchronized sam
Computer relays - Digital syn
Domain, Digital Filtering, Pe
Filter - Relay Ladder Logic. | pling, Fau
stems (Si | ut loca
gnal P | roces | Alarms,
sing, Fi | etc) - S
Itering | Solid-sta
Overvie | ate rela
w, Dis | ays,
crete | osine | | Textbook | Power System Protection ar
Switchgear & Protection, by | | - | | aw-Hill E | Educati | on, 201 | 0. | | | | EPES420 | Electrical Machines Design | 3 | 2 | | 2 | | | | | 4 | | Sp | | | | | | | | | | | | | software packages for electr | | | 100100 | | | | | | | | | | C | | | C | ontac | t Hou | rs | | 11. | |----------|---|---------------------|---------|------------|------------|-----------|---------|-------------|-------------|----------| | Code | Name/Content | Credit
Hours | Lec | Tut
(2) | App
Tut | Lab | Stud | Off.
Tut | Off.
Hrs | Tota | | EPES421 | Electrical Machines Drives | 3 | 2 | | 2 | | | | | 4 | | | Pre-requisites: EPES304 + I | EPES405 | + AA | Appro | oval | | | | | N.C. | | | Drive Requirements and Sp | ecification | ns, Dri | ve Cla | assificat | ions an | d Chara | acteris | tics, Lo | ad | | | Profiles and Characteristics, | | | | | | | | | | | | control, Direct torque contro | | | | | | | | | | | | Synchronous Motor Drives. | | | | | | | | | | | | Motor Drives, Permanent-M | | | | | | | | | | | | Motor Drives, Switched-Relu | uctance N | 1otor [| rives, | and S | ynchror | nous Re | luctan | ce Mot | or | | | Drive. | F1 13 | - 1.1 | | 0000 | and E. II | | | | | | Textbook | Ion Boldea, Lucian N. Tutele | | | nines, | | Ziio Edi | tion | | | 1. | | EPES422 | Electric Traction and | 3 | 2 | | 2 | | | | | 4 | | | Mobility Systems | CDEC 405 | | A | | | | | | <u> </u> | | | Pre-requisites: EPES304 + I | CAROLINE STATISSICS | | | | - 100 | Tanadia | - 0 | | 40 | | | Evolution of electric traction | | | | | | | | | | | | Traction Systems – Selection
Traction Motors - AC Traction | | | | | | | | | | | | equivalent circuit – performa | | | | | | | | | | | | Mobility systems: construction | | | | | | | | | | | | Traction and Mobility motors | | | | | mance | - 0011 | ioi sy. | sterris (| ,, | |
Textbook | Andreas Steimel, Electric Tr | | | | | nerav S | upply 2 | 014 2 | nd Edi | tion | | EPES423 | Electrical Installations | 3 | 2 | | 2 | lorgy o | | | | 4 | | _,, | Pre-requisites: EPES302 + / | | val | | - | | | | | - | | Cn | Load characteristics - Load | | | lectric | Supply | Regul | ations- | Condu | ictors a | and | | 2n | cables - Installation methods | | | | | | | | | | | | and industrial installations -f | | | | | | | | | | | | Voltage drop and short circu | | | | | | | | | | | | drawing. | | | | | | | | | | | Textbook | Brian Scaddan, Electrical In- | -tallation | 111 - 1 | 0040 | | | | | | | | | | Credit Contact Hours | | | | | | | | | |----------|---|--|---------------------------------------|-------------------------------------|--|---------------------------------|---------------------------------|--------------------------|---------------------------|-------| | Code | Name/Content | Hours | Lec | Tut
(2) | App
Tut | Lab | Stud | Off.
Tut | Off.
Hrs | Total | | EPES424 | Introduction to
Mechatronics | 3 | 2 | | 2 | | | | | 4 | | | Pre-requisites: EPES311 | + EPES308 | + AA | Appro | oval | | | | | | | | Introduction to mechatron
systems, Actuators and S
control systems, Microcon
disciplines, Analogue acti | ensors with
atroller-base | mixed | disci | plines, I | Interfac | ing, Mic | rocon | troller-l | | | Textbook | W. Bolton, Mechatronics:
Engineering 7th Edition, 2 | | Contro | Syste | ems in I | Mechar | nical and | d Elect | trical | | | EPES425 | Process Control and
Robotics | 3 | 2 | | 2 | | | | | 4 | | | Pre-requisites: EPES404 | + AA Appro | val | | | | | | | | | | control design of time-del-
controllers, hybrid control
implementation of industri
kinematics, robots inverse | lers, introdu
ial controlle
e kinematics | ction to
rs, intro
s, path | o mod
oducti
plann | lel pred
on to no
ing, joir | ictive conlinea | ontrol, S | Smith p | oredicto
obots | | | Textbook | Peter Corke, Robotics and | d Control, S | cringe | r, 202 | 211 | _ | | \mathcal{A} | | 100 | | EPES426 | Computer Control i
Energy Systems | in 3 | 2 | | 2 | | | | | 4 | | | Pre-requisites: EPES311 | | | | | | | | | | | Sp | Evolution of distributed co
programmable logic contr
- analog input-output mode
and transducers - function
requirements - network to
SCADA systems - process | ollers – prod
dules – seria
n blocks – lo
opologies – | gramm
al com
ocal co
input/o | munic
munic
ntrol u
output | chnique
ation in
units lar
bus ne | es- disc
terfacir
iguage: | rete inp
ng – dat
s – com | ut out
a mea
munic | put mo
sureme
ation | ents | | Textbook | | | | | | unit Kui | mar Ser | · CR | C press | s, | | | | Credit | | | C | ontac | t Hou | rs | | 132 | |----------|---|---|------------------------------|----------------------------|--------------------------------|---------------------------------|----------------------------------|--------------------------|-------------------------|-------| | Code | Name/Content | Hours | Lec | Tut
(2) | App
Tut | Lab | Stud | Off.
Tut | Off.
Hrs | Total | | EPES427 | Intelligent Control | 3 | 2 | _/Am (3/4) | 2 | | | | | 4 | | | Pre-requisites: EPES308 + | AA Appro | val | | \$1.00 m | | | 50 0 | | | | | Artificial intelligence basics,
controllers, Fuzzy PID controllers, Fuzzy PID controllers, Fuzzy PID controllers, multi-
classification problem, multi-
learning algorithms, recurred
Neuro-fuzzy systems, introduced | ol, Neural
layer netv
nt networl | l netwo
vorks,
ks, rac | orks in
Feed
lial ba | troduct
forward
sis netw | ion, per
I netwo
vorks, r | rception
rks, bac
neural n | mode
k prop
etwork | l,
agation
contro | ol. | | | and ants colony, application | | | Zation | metrio | us suci | i as swe | ппор | umizat | 10115 | | Textbook | Anastasios Dounis, Intellige | | | erny 9 | Svetome | Αυσυ | et 2010 | 3 | | | | EPES428 | Power Systems Operation | With the Party of | 2 | cigy c | 2 | , rugu | 31 20 13 | | | 4 | | LI L0420 | and Control | | - | | | | | | | 1-4 | | | Pre-requisites: EPES402 + | AA Appro | val | 100 | | 100 | 4 | | | 1 | | | Modelling of Synchronous C | | | d Frea | uency (| Control | - Voltac | e and | Reacti | ve | | | Power Control - Power Syst | | | | | | | | | | | | Commitment - Power System | | | | | | | | | | | | Optimal power flow problem
Shunt FACTS devices (STA | | | | | | | | | ment. | | Textbook | John Fuller, Pamela Obiome
Control, 2022 | on, Samir | I. Abo | od, P | ower Sy | /stem (| Operatio | n, Utili | zation, | and | | EPES429 | Environmental Impact of Electricity | 3 | 2 | | 2 | | | | | 4 | | | Pre-requisites: 70 CRH + A | A approva | al | | | | | | | 7 | | Sp | Air impacts: Climate change
(mercury), Water impacts: C | Consumpti | ion of | water | resourc | es, Po | llution o | f water | r bodie | s, | | | Land impacts: On-site land | | | | | | | | | | | | waste, Radio-active waste f | | | | | | | | | | | | magnetic fields, Environmen | | | | | | ectric po | wer p | rojects. | | | Textbook | Paul Breeze, Electricity Ger | neration a | nd the | Envir | onment | ,2017 | | | | | | | | Credit | | | C | ontac | t Hou | rs | | 110 | |----------|--
--|------------------------------------|-------------|-------------------------------|-------------------------------|------------------------|------------------------------|----------------------------|---------------| | Code | Name/Content | Hours | Lec | Tut
(2) | App
Tut | Lab | Stud | Off.
Tut | Off.
Hrs | Tota | | EPES430 | Operations Research | 3 | 2 | _ XI 1886 | 2 | | | | | 4 | | | Pre-requisites: 70 CRH + A | A approva | al | | | | | | | 10000 | | | Operations research histori models, Linear programmin Simplex method, the Trans Techniques, and Introduction of network for a project man Decision Making under Under Control of the Contr | g problem
portation I
on to Multi
nagement | formi
Model,
objec
Critic | the A | n, Funda
ssignm
lathema | amenta
ent Mo
atical Pi | ls of alg
del, Inte | ebraic
ger Pr
ning, fo | solution
ogram
undam | on of
ming | | Textbook | Hamdy A. Taha, "Operations Research: An Introduction", 10th edition, Pearson Education Limited, England, 2017 | | | | | | | | | cation | | EPES431 | Electrical Generators for | 1.54 | 2 | | 2 | | | | h | 4 | | | Renewable Energy
Applications | | | | | A | | | | | | | Pre-requisites: EPES304 + | AA Appro | val | | | 2014 | | | | | | | speed torque characteristi Induction generators - Varia
generators. Permanent magenerators - Generators co | able speed
gnet synch | Indu | ction g | generato | ors - Do | oubly fee | d Indu | ction | ctrical | | Textbook | Ion Boldea, Electric Genera | | book | - Two | Volume | Set 2 | 016. 2n | d editi | on. | | | EPES432 | Super Conductor Applications | (\$ of | 2 | gin | eeri | ng | Prof | ess | ion | 4 | | | Pre-requisites: EPES203 + | | | | | | | | | | | | Historical note on the disco | | | | | | | | | | | | conductor and a supercond
diamagnetism, conduction | | | | | | | | | | | | power engineering; superco | | | | | | | | | | | | generators, superconducting | The state of s | | | | | | | | 5 | | | applications (superconducti | | | | | | | _ | | - , , | | | superconducting magnetic | Control of the Contro | rage s | systen | n for po | wer qu | ality miti | gation | - futur | е | | Touthook | trends in superconductor us | | rd. of | s eith er 1 | londhe | le en D | ouices: | and A- | nlicati | one | | Textbook | Paul Seidel (Editor), Applie 2015. | u Superco | ducti | vity. F | Tanub00 | JK OII L | evices | and Ap | plicati | ons, | | Code | | Credit
Hours | Contact Hours | | | | | | | | | | |-----------|--|---------------------------------------|---------------|-------------------|------------|---------|---------|--|-------------|-------|--|--| | | Name/Content | | Lec | Tut
(2) | App
Tut | Lab | Stud | Off.
Tut | Off.
Hrs | Total | | | | EPES433 | Power Electronics
Applications in Energy
Systems | 3 | 2 | | 2 | | | | | 4 | | | | | Pre-requisites: EPES405 + AA Approval | | | | | | | | | | | | | | Thyristor Based FACTS Devices: Conventional Reactive Power Compensators - Saturated Reactor (SR) – Thyristor-Controlled Reactor (TCR) – Thyristor-Controlled Transformer (TCT) – Fixed Capacitor/Thyristor-Controlled Reactor (FC-TCR) – Thyristor Switched Capacitor (TSC) – Thyristor-Controlled Series Capacitor (TCSC) – Back-to-Bac HVDC Conversion System. Voltage Source Inverters: Static Synchronous Compensator (STATCOM) – Static Synchronous Series Compensator (SSSC) – Shunt Active Power Filters – Series Active | | | | | | | | | | | | | | Power Filter – Hybrid Active Power Filter – Back-to-Back HVDC VSC Conversion System. | | | | | | | | | | | | | Textbook | Neeraj Vyas Saifullah Khali | d, Applica | tions | of Pow | ver Elec | tronics | in Powe | er Sys | tem, 20 | 10 | | | | EPES434 | Embedded Systems Applications in Power Electronics | 3 | 2 | | 2 | 5" 1 | | | | 4 | | | | | Pre-requisites: EPES405 + AA Approval | | | | | | | | | | | | | Sp | Common Processor Architectures – Basic Microcontroller Hardware Systems – Interfacing Techniques – Microcontroller programming Using C-Language and MATLAB and Simulin – Software Development, Debugging and Testing. Basic Analog Circuits for Digital Applications – Microcontroller-based Phase Control Triggering circuits (AC/DC Rectifiers and AC/AC Voltage Controllers) – Microcontroller-based PWM Control Drive Circuits | | | | | | | | | | | | | | (DC/DC Converters and DC/AC Converters) – Analog to Digital Conversion – Voltage Sensing and Measurement – Current Sensors and Current Measurement – Speed | | | | | | | | | | | | | | Sensors and Speed Measurement - Common Isolation Techniques - Implementation of | | | | | | | | | | | | | Tauth and | Common Digital Controllers and Filters – Mini-project. Ahmet Bindal, Electronics for Embedded Systems, Springer, 2017 | | | | | | | | | | | | | Textbook | | | | /stem | | ger, 20 | 17 | | | | | | | EPES435 | Power Electronics for | 3 | 2 | | 2 | | | | | 4 | | | | | electric vehicles | AA Annro | L l | | | | | | | _ | | | | | | Pre-requisites: EPES405 + AA Approval | | | | | | | | | | | | | Drivetrain Architecture and dynamics of hybrid and electric vehicles - rating and sizing of drivetrain components - Analysis, modeling, simulations and design considerations for: | | | | | | | | | | | | | | Battery systems, battery ma | nagemer | telec | ronics | s, Bidire | ctional | dc-dc c | onvert | | JI. | | | | Textbook | L. Ashok Kumar, S. Albert A
2020 | | | The second second | | | | AND DESCRIPTION OF THE PERSON NAMED IN | 1st Edi | tion, | | | | Code | Name/Content | Credit | Contact Hours | | | | | | | | | |
--|--|--|---|---------------|---|----------------------------|---|------------------|---|------------|--|--| | | | Hours | Lec | Tut
(2) | App
Tut | Lab | Stud | Off.
Tut | Off.
Hrs | Total | | | | EPES436 | Electrical Sub-Stations
Design | 3 | 2 | | 2 | | | | | 4 | | | | | Pre-requisites: EPES406 + AA Approval | | | | | | | | | | | | | | Overhead transmission line design – Cable design – High Voltage Insulators description – Disconnector and circuit breaker selection – Earth switches – Current and voltage transformers selection – Relay coordination – Busbar design – Grounding design – learning Software used in substation design | | | | | | | | | | | | | Textbook | | | | | | | | | | | | | | EPES437 | Special Topics in High | 3 | 2 | - | 2 | | | | | 4 | | | | | Voltage Engineering | 200 100 | (2000 | | | | | | b | | | | | | Pre-requisites: EPES406 + AA Approval2 | | | | | | | | | | | | | | Corona discharge - High voltage insulators for transmission lines - Electrical breakdown in | | | | | | | | | | | | | | solids - Electrical breakdown in gases - destructive and non-destructive tests -leakage | | | | | | | | | | | | | | currents in high voltage insulators - Electrical breakdown in liquid insulators | | | | | | | | | | | | | Textbook | | | | | | | | | | | | | | EPES438 | Energy Storage Systems | 3 | 2 | | -2 | | | | | 4 | | | | | Pre-requisites: EPES204 + | - AA Appro | wal | | ITT | | | | 1 | | | | | | Types of electrical energy | | | | | | | | | | | | | | for electrical energy storage - Operational characteristics of electrical storage - Costs and | | | | | | | | | | | | | | pricing - Integration of energy storage into electrical grids - Off-grid systems, architecture | ture | | | | | and sizing - Small scale ba | ttery stora | ge sys | tems | - Types | and a | plicatio | ns of t | hermal | ture | | | | Sn. | and sizing - Small scale ba
energy storage - Future de | ttery stora | ge sys
s in er | tems
nergy | - Types | and a | plicatio | ns of t | hermal | ture | | | | Sp | and sizing - Small scale ba
energy storage - Future de
- off Grid PV systems - Pr | ttery stora
velopment
otection S | ge sys
s in er
ystems | tems
nergy | - Types
storage | and an | oplicatio
lications | ns of t | hermal | ture | | | | Sp | and sizing - Small scale ba
energy storage - Future de
- off Grid PV systems - Pr
Satyender Singh, Energy S | velopment
otection S
Storage Sy | ge sys
s in er
stems
s:ems | tems
nergy | - Types
storage
stroduct | and an | oplicatio
lications | ns of t | hermal | icles | | | | THE RESIDENCE OF THE PARTY T | and sizing - Small scale ba
energy storage - Future de
- off Grid PV systems - Pr
Satyender Singh, Energy S
Wireless Networking | velopment
otection S
Storage Sy | ge sys
s in er
ystems
s:ems
2 | tems
nergy | - Types
storage | and an | oplicatio
lications | ns of t | hermal | ture | | | | Textbook
EPES439 | and sizing - Small scale ba
energy storage - Future de
- off Grid PV systems - Pr
Satyender Singh, Energy S
Wireless Networking
Pre-requisites: EECS203 + | velopment
otection S
Storage Sy
3
AA Appro | ge sys
s in er
ystems
s:ems
2 | tems
nergy | - Types
storage
stroduct
2 | and and Application, 20 | oplications
ications
20. | ns of t | hermal
ric veh | icles | | | | THE RESIDENCE OF THE PARTY T | and sizing - Small scale bate energy storage - Future de - off Grid PV systems - Pr Satyender Singh,
Energy S Wireless Networking Pre-requisites: EECS203 + Design and analysis of mo | velopment
otection Systorage Systora | ge sys
s in er
stems
s:ems
2
val | An Ir | - Types
storage
ntroduct
2
works. [| and and application, 20 | pplications
ications
20. | ns of t | hermal
ric veh | icles | | | | THE RESIDENCE OF THE PARTY T | and sizing - Small scale batenergy storage - Future de - off Grid PV systems - Pr Satyender Singh, Energy S Wireless Networking Pre-requisites: EECS203 + Design and analysis of mowireless channel models, of the size th | stery storal
evelopment
otection Systorage Sys | ge sys
s in er
ystems
s:ems
2
val
ess da
e lular | An In | troduct
2
works. [| ion, 20 | poplications
20.
modulations | ion tec | hermal
ric veh
hnique
er sense | icles 4 s, | | | | THE RESIDENCE OF THE PARTY T | and sizing - Small scale batenergy storage - Future detenergy storage - Future detenergy storage - Property Satyender Singh, Energy Storage - Property Prop | stery storal
evelopment
otection Systorage Sys | ge sys
s in er
ystems
s:ems
2
val
ess da
e lular | An In | troduct
2
works. [| ion, 20 | poplications
20.
modulations | ion tec | hermal
ric veh
hnique
er sense | icles 4 s, | | | | THE RESIDENCE OF THE PARTY T | and sizing - Small scale batenergy storage - Future de - off Grid PV systems - Pr Satyender Singh, Energy S Wireless Networking Pre-requisites: EECS203 + Design and analysis of mowireless channel models, comultiple access, ad-hoc nestrategies. | stery storal velopment otection Systorage Syst | ge sys
s in er
stems
s:ems
2
val
ess da
e lular
ting, e | An Ir | - Types
storage
ntroduct
2
works. I
orks, spi
ontrol co | ion, 20
Digital read sp | polications
20.
modulations
ectrum,
automat | on tec
carrie | hermal
ric veh
hnique
er sense
uest | icles | | | | | | Credit | Contact Hours | | | | | | | | | |----------|--|---|------------------------------------|------------|--|--|------------|-------------|-------------|---------|--| | Code | Name/Content | Hours | Lec | Tut
(2) | App
Tut | Lab | Stud | Off.
Tut | Off.
Hrs | Total | | | EPES440 | Introduction to Digital | 3 | 2 | _A-144 | 2 | | | | | 4 | | | | Computer Architecture | | | | | | | | | | | | | Pre-requisites: EPES311 + / | | | | | | | | | | | | | Control, data, and demand-driven computer architecture; parallel processing, pipelining, and vector processing; structures and algorithms for array processors, systolic architectures, design of architectures. | | | | | | | | | | | | Textbook | David Harris, Sarah L. Harris | Digital D | esign | and Co | omputer | Archite | ecture 2 | nd Edit | ion, 20 | 12. | | | EPES441 | Microcomputer structure | 3 | 2 | | 2 | | | | | 4 | | | | and interfacing | | | | | | | | | | | | | Pre-requisites: EPES311 + A | | | | | | | | | | | | | Design of computer systems | | | | | | | | | | | | | high power interface devices, | | | | | | | | nd utiliz | zation | | | | of software techniques for programmed, interrupt, and direct memory access. | | | | | | | | | | | | Textbook | David L. Prowse, Mark Edwa | rd Soper, | et al., | Comp | uter Stru | ucture a | and Logi | c, 201 | 1. | 120000 | | | EPES442 | Introduction to Digital | 3 | 2 | | 2 | 5 | | | 1/ | 4 | | | | Image Processing | | | | _/_ | | | | | | | | | Pre-requisites: EECS203 + AA Approva | | | | | | | | | | | | | Introduction to the vision process fundamental mathematical characterization of digitized | | | | | | | | | | | | | images, two-dimensional transform methods used in image processing, histogram analysis and manipulation, image and filtering techniques, image segmentation, and morphology. | | | | | | | | | | | | T | | | | | | | | | nology | | | | Textbook | | | | ige Pro | ocessing | 3, 4tn E | dition, 2 | 017. | _ | 1. | | | EPES443 | Digital Speech Processing | 3 | 2 | | 2 | | 1 1 | | | 4 | | | C | pololiza de James | and out | 2 10% d | 201 200 | 0.00 | 200 |)maf | 000 | lon | \perp | | | 211 | Pre-requisites: EECS203 + A | | | 71111 | 3131 | 19.1 | | H7.2 | | | | | OP | Covers fundamentals in digital speech processing including production, speech analysis, | | | | | | | | | | | | | speech coding, speech enhancement, speech recognition and speaker recognition. Emphasize hand-on experience of processing speech signals using MATLAB. | | | | | | | | | | | | Touthout | | CONTRACTOR DESCRIPTION OF THE PERSON NAMED IN | THE RESERVE OF THE PERSON NAMED IN | | Name and Address of the Owner, where which the Owner, where the Owner, which | AND DESCRIPTION OF THE PERSON NAMED IN | × | | \h | | | | Textbook | Lawrence Rabiner (Author), F
Processing, 2010. | Konald Sc | nater, | rneor | y and A | pplication | ons of D | igital S | speecn | | | | EPES444 | Biometric Systems | 3 | 2 | | 2 | | | | | 4 | | | LF L3444 | Pre-requisites: CMPS103 + A | | | | | | | | 3 | 4 | | | | This course presents an intro | | | rinciple | e of one | aration | docian | toetin | a and | | | | | implementation of biometric s | | | | | | | | | tod | | | | with their use. | ysterns, a | inu trie | legal, | sucial, | and ell | iicai CUII | COLLIS | assuulä | ileu" | | | Teythook | Anil K. Jain, Arun A. Ross, Ka | arthik Nan | cakun | ar In | troductio | on to Ri | ometrice | 2011 | | | | | LEYIDOOK | Alli N. Jaili, Aluli A. Ross, Na | IIDNI AIIII | Lakull | iai, III | uouuciic | ווע טוווע | ometrics | , 2011 | | | | | Code | Name/Content | Credit | Contact Hours | | | | | | | | | |----------|---|--------|---------------|------------|------------|-----|------|-------------|-------------|-------|--| | | | Hours | Lec | Tut
(2) | App
Tut | Lab | Stud | Off.
Tut | Off.
Hrs | Total | | | EPES445 | Introduction to Microfabrication | 3 | 2 | | 2 | | | | | 4 | | | | Pre-requisites: EECS101 + AA Approva Introduction to the physical processes underlying current and emerging microfabrication technology and their selective use in the technology computer aided design (TCAD) and fabrication of electrical, optical, and micromechanical devices and systems. | | | | | | | | | | | | Textbook | | | | | | | | | | | |