PART [C]: SPECIALIZED PROGRAMS (10) AERONAUTICAL ENGINEERING AND AVIATION MANAGEMENT Program (AEM) برنامج هندسة وإدارة الطيران #### (10) Aeronautical Engineering and Aviation Management (AEM) برنامج هندسة وإدارة الطيران #### رؤية البرنامج VISION To create a world class community of aeronautical engineers capable of shaping the next generation of Aviation Management systems. #### رسالة البرنامج MISSION The program's mission is to provide highly qualified Aeronautical and Aviation engineers. Equipped with proper engineering analysis and design tools, the program graduates should be capable of creative thinking and possess diversity of knowledge and skills required to understand the complex engineering systems and the state of the art of the Airtransport profession Educational Objectives Within few years of graduation, Graduates of the AEM program should be able to utilize the acquired knowledge of science, engineering fundamentals, technical background and general managerial skills, to demonstrate leadership and work in teams to; - Solve engineering problems related to aircraft maintenance and repair, air fleet management, and flight planning related issues. - Demonstrate capabilities to detect prob ems, measure, assess, plan, design solution procedures, manage and supervise related solution activities. - Operate and manage airports and supervise airport related services Demonstrate leadership, desire and ability for continuous life learning and career advancement and keep up with the ethics of the profession. #### مواصفات الخريج GRADUATE ATTRIBUTES يتبني البرنامج مواصفات الخريج التي حددتها الكلية في لرائحها المعتمدة والمعلنة في دليل الطالب بالأضافة لبعض المواصفات الخاصة بخريج هندسة وإدارة الطيران وذلك لتلبية الاحتياجات الفطية للمجتمع في مجال هندسة وإدارة الطيران لتواكب رؤية مصر وهي كالآتي: - تطبيق المبادئ الأساسية ومفاهيم هندسة الطيران لإيجاد حلول للمشاكل الهندسية. - استخدام الطرق والأدوات الحديثة والمناسبة لهندسة وإدارة الطيران. - القدرة على تصميم النظم الطيرانية ومكوناتها لتحقيق الهدف الهندسي المرجو. - إدراك تأثير ومشاكل تطبيقات هندسة وإدارة الطيران على المجتمع والبيئة. - تصميم وتأدية التجارب المعملية المناسبة وتحليل وتفسير بباثاتها. - فهم قضايا هندسة وإدارة الطيران المعاصرة. - 7. العمل بكفاءة في فريق متعدد التخصصات. - 8. الالتزام بأخلاقيات المهنة والمسئولية الاجتماعية والثقافية. - 9. الاتصال الفعال شفويا وخطيا. - 10. القدرة على التعلم الذاتي المستمر. - 11. إدارة المشروعات الهندسية الطيرانية بنجاح في إطار القبود الاقتصادية والبينية والاجتماعية المختلفة. - 12. المرونة والقدرة على تحقيق متطلبات أصحاب العمل المحتملين. #### مرجعية البرنامج PROGRAM BENCHMARK | NARS 2018 | LEVEL A | LEVEL B | LEVEL C | |-----------|-----------------|---------|----------------| | 1 | Totally Adopted | NA | ABET 2019-2020 | | | P. A11 | | Aerospace | # In addition to the Basic Engineer competencies, the AEM program graduate (C LEVEL) must be able to: - C.1. have a knowledge of aerodynamics, aerospace materials, structures, propulsion, flight mechanics, and stability and control. - C.2. have a knowledge of orbital mechanics, space environment, attitude determination and control, telecommunications, space structures, and rocket propulsion. - C.3. combine aeronautical engineering and astronautical engineering, must prepare graduates to have knowledge covering one of the areas aeronautical engineering or astronautical engineering as described above. - C.4. have design competence that includes integration of aeronautical or astronautical topics. # توصيف المقررات SPECIALIZED COURSES CONTENTS | Code | Name | Credit Hours | Category | Pre-requisite | |---------|-----------------------|--------------|----------|----------------------------| | AEMS280 | Engineering Seminar | 1 | DR | 30 CR.HRS. +
AA APROVAL | | AEMS281 | Industrial Training-1 | 1 | FR | 60 CR.HRS. +
AA APROVAL | | AEMS381 | Industrial Training-2 | 2 | DR | AEMS281 +
AA APROVAL | | AEMS481 | Graduation Project-1 | 1 | FR | 110 CR.HRS.+
AA APROVAL | | AEMS482 | Graduation Project-2 | 3 | DR | AEMS481 +
AA APROVAL | | Total | | 2+6 | | | # توصيف المقررات COURSES CONTENTS | | | Credit | | 2 | (| onta | ct Ho | urs | AN I | | | |------------|---|------------------------|------------------|-------------|---------|---------|-------------|-------------|--------|-----|--| | Code | Name/Content Hours | Lec | Tut
(2) | App.
Tut | Lab | Stud | Off.
Tut | Off.
Hrs | Total | | | | Faculty F | Requirements | | | | 1 | | | | | | | | AEMS280 | Engineering Seminar | 1 | 1 | 0 | 0 | | | | | 1 | | | 0 | Pre-requisites: 30 CR.HRS. + AA APROVAL | | | | | | | | | | | | AEMS281 | The guest speaker should discuing the implemented in his/her industrial reports on the guest presentation course is graded as Pass/Fail | l establis
n and de | hmen
liver th | t. Stud | dents e | exercis | e writin | g brief | techni | cal | | | , LINOZO I | Pre-requisites: 60 CR.HRS. + AA | APROVA | AL. | | | | | | | | | | | Training on industrial establishments relevant to the program. Training lasts for total of 90 hours, during a minimum period about of weeks. The program training advisor schedules at least one follow up visit to the training venue and formally report on performance of trainee(s). A Mentor in the industrial establishment provides a formal report on the student's performance during training. The student submits a formal report and presentation to be evaluated by a panel of three members with one member being an external examiner | | | | | | | | | | | | | 230-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1 | Credit | | | (| Conta | ct Ho | urs | | | | |---------|--|--------------------------------------|---------|-----------------|------------------|---------------------|-------------------|-------------------|-------------------|---------|--| | Code | Name/Content | Hours | Lec | Tut
(2) | App.
Tut | Lab | Stud | Off.
Tut | Off.
Hrs | Total | | | | appointed from industry or other
grade-system. | r college: | s of er | nginee | ering. | The co | urse is | gradeo | as Pa | ss/Fail | | | AEMS381 | Industrial Training-2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | | | | Pre-requisites: AEMS281 + AA Approval | | | | | | | | | | | | | Training on industrial establishments, during a minimum period least two follow-up visits to the t | of six we | eks. | The p | rogran | n trainir
report | ng advi
on per | sor sch
formar | nedules | at | | | | trainee(s). A Mentor in the industry performance during training. The evaluated by a panel of three mappointed from industry or other grade-system. | e s <mark>tude</mark> nt
embers v | subn | nits a
ne me | formal
mber l | report
being a | and pr | esenta
nal ex | tion to
aminer | be | | | AEMS481 | Graduation Project-1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | | 1 | | | | Pre-requisites: 110 Credits + AA APROVAL | | | | | | | | | | | | AEMOADO | Students – in groups (or individually in some programs) - undertake a final project as part of the program. In GP1, students provide a clear identification of a real-life problem that represents an actual need for the industry or the community and reflects the mission and strategic objective of CUFE. Students are expected to survey the related literature, collect and interpret market data, and proposed an approach for
the solution, using the engineering knowledge and skills acquired. The course is graded as Pass/Fail based upon a report/oral presentation stating the expected cost and required material, tools, and facilities as well as a timed list of deliverables. | | | | | | | | | | | | AEMS482 | Graduation Project-2 Pre-requisites: AEMS481 + AA | | ngi | ne | | 1g° F | rof | 655 | ion | 4 | | | | Graduation Project-2 is the second phase of the graduation project. The aim is to develop innovative solutions to problems encountered during the implementation process thus fulfilling the deliverables stated in Graduation Project-1. A dissertation on the project is submitted taking into consideration technical, economical, social, and environmental requirements while analyzing the major results and presenting direct conclusions. | | | | | | | | | | | ## متطلبات البرنامج PROGRAM REQUIREMENTS | Catego | ory | No. of courses | Course
Credit Hour | Total Credit
Hours | |----------------------------------|---------------------|----------------|-----------------------|-----------------------| | by the | core/ | 8 | 2 | 16 | | Discipline | compulsory | 15 | 3 | 45 | | Requirements
(DR) | Floativa | 0 | 2 | 0 | | (5.1) | Elective | 0 | 3 | 0 | | Total DR courses | | 23 | | 61 | | | core/
compulsory | 1 | 2 | 2 | | Program | | 6 | 3 | 18 | | Requirement (PR) | Flootive | 4 | 2 | 8 | | | Elective | 6 | 3 | 18 | | Total PR courses | | 17 | 急 | 46 | | Total Elective courses (DR & PR) | | 10 | 1 | 26 | ## - Discipline Requirements (DR) core/compulsory courses list | | | 1.1 | | |---------|--|--------|--------------| | Code | Name | Credit | Pre-requiste | | AERS121 | Fundamentals of Flight | 2 | 18 Credits | | MDPS001 | Fundamentals of Manufacturing Engineering | 2 | None | | AERS212 | Materials Science for Engineering | orking | Dr PHYS001 | | MTHS102 | Linear Algebra and Multivariable Integrals | 3 3 | MTHS003 | | AERS213 | Fundamentals of Thermodynamics | 3 | PHYS001 | | AEDC044 | Fluid Manharian | _ | PHYS001 | | AERS211 | Fluid Mechanics | 3 | MTHS003 | | EPES201 | Electrical Engineering Fundamenals | 3 | PHYS002 | | AERS222 | Strength of Materials | 3 | AERS212 | | AERS228 | Aviation Economics | 2 | GENS120 | | INTS216 | Computer Aided Machine Drawing | 3 | INTS001 | | AERS214 | System Dynamics and Modeling | 3 | MTHS104 | | MTUCOOS | Compley Functions | 2 | MTHS102 | | MTHS203 | Complex Functions | 2 | MTHS104 | | AERS311 | Aerodynamics | 3 | AERS221 | | Code | Name | Credit
Hours | Pre-requiste | |---------|--|-----------------|----------------------------| | AERS313 | Aircraft Jet Engine Components | 3 | AERS213
AERS221 | | AERS321 | Aircraft Performance and Stability | 3 | AERS311 | | AERS412 | Aircraft Structures | 3 | AERS312 | | AERS323 | Aircraft Engine Performance | 3 | AERS313 | | AERS414 | Introduction to Microcontroller | 3 | EPES201
AERS314 | | AERS416 | Airtransport System Analysis | 3 | MDPS362 | | AERS315 | Aircraft Systems | 2 | 85 Credits | | AERS325 | Aircraft Engine Construction | 2 | 85 Credits
AERS313 | | AERS424 | Flight Mechanics, Stability, and Control | 3 | AERS314
AERS321(Co-Reg) | | AERS428 | Aviation Organization | 2 | 110 Credits | | Total | | 61 | 3 | ## Program Requirements (PR) core/compulsory courses list | Code | Name | Credit
Hours | Pre-requiste | |---------|--|-----------------|--------------| | MTHS104 | Differential Equations | 3 | MTHS003 | | AERS221 | Gas Dynamics | 3 | AERS211 | | AERS312 | Mechanics of Structures 1 | 3 | AERS222 | | AERS322 | Mechanics of Structures 2 | 3 | AERS222 | | AERS314 | Automatic Control | 3 | AERS214 | | MDPS362 | Operation Research I | 3 | MTHS102 | | AERS420 | Aviation Laws, Legislations, and Airworthiness | 2 | 110 Credits | | Total | | 20 | | ## Program Requirements (PR) elective courses list | Code | Name | Credit
Hours | Pre-requiste | |----------|--|-----------------|-----------------------| | ELECTIVE | (E-2) 10 courses (26 Credits) | | | | AERS339 | Machine Elements | 2 | INTS216 | | AERS327 | Human Resource Management | 2 | GENS110 | | AERS336 | Logistics and Transportation | 2 | MDPS362 | | AERS434 | Digital Control Systems | 2 | AERS314 | | AERS422 | Introduction to Composite materials | 2 | AERS312 | | AERS446 | Airtransport Market Analysis and Forecasting | 2 | GENS110
MTHS003 | | AERS346 | Information Technology for Airtransport Industry | 2 | GENS110
MTHS003 | | AERS433 | Aircraft Piston Engines | 2 | AERS213 | | AERS435 | Aircraft Maintenance Systems Engineering | 2 | 85 Credits
AERS315 | | AERS338 | Engineering Standards and Specifications | 25 | 50 Credits | | AERS334 | Hydraulic and Pneumatic Systems | /3 | AERS314 | | AERS432 | Fracture Mechanics and Structural Repair | 3 | AERS222 | | AERS455 | Aircraft Engine maintenance systems | 3 | 85 Credits
AERS435 | | AERS436 | Airline Operation and Management | 3 | MDPS362 | | AERS317 | Maintenance systems Management and Reliability | 3 | MTHS003 | | AERS427 | Strategic Planning and Management | erino | GENS110
MTHS003 | | AERS442 | Fundamentals of Nondestructive ⊤esting | 3 | GENS110
MTHS003 | | AERS445 | Aircraft Engine Systems | 3 | 85 Credits
AERS325 | | AERS417 | Project Planing, Queueing Systems and Simulation | 3 | GENS110
50 Credits | | AERS349 | Manufacturing processes for Aercspace | 3 | MDPS001 | | Total | Single y | 26 | | #### Proposed Study Plan - 8 semesters - Including Freshman Level | | Code | | | Contact Hours | | | | | | | | | |----------|---------|---|--------|---------------|---------|---------|-----|------|---------|-------|-------|--| | S | | Name | Credit | Lec | Tut (2) | App Tut | Lab | Stud | Off Tut | OffHr | Total | | | _ | PHYS001 | Mechanical Properties of Matter and
Thermodynamics | 3 | 2 | | 2 | 1 | | | | 5 | | | K | MTHS002 | Calculus I | 3 | 2 | 2 | | | | | | 4 | | | E | EMCS001 | Engineering Mechanics - Dynamics | 3 | 1 | 2 | 1 | 1 | | | | 4 | | | SEMESTER | CHES001 | Chemistry for Engineers | 2 | 1 | 2 | | | | ĵ | | 3 | | | N | INTS001 | Engineering Graphics | 3 | 2 | | | | 3 | | | 5 | | | S | INTS004 | Information Technology | 2 | 1 | | | 3 | | | | 4 | | | | GENS004 | Proficiency and Capacity Building | 2 | 2 | 1 | | | | 1 | | 1 | | | | | Sub-Total | 19 | 13 | 6 | 2 | 4 | 3 | 0 | 0 | 28 | | | | 301 | | 1 | | | Con | tac | t Ho | ours | | | |----------|------------------|---|----|-----|---------|----------|-----|------|---------|----------|-------| | s | Code | | | rec | Tut (2) | App. Tut | Lab | Stud | Off Tut | Off. Hrs | Total | | П | MTHS003 | Calculus II | 3 | 2 | 2 | - 10 | | | | | 4 | | | EMCS002 : | Engineering Mechanics - Statics | 2 | _1_ | 2 | D | | - | | n men | 3 | | 2 | PHYS002 | Electricity and Magnetism | 3 | 2 | Ø | 2 | 1 | 62 | SIL | | 5 | | 1 | GENS002 | Societal Issues | 2 | 2 | 0 | | | | | | 2 | | SEMESTER | E-A
(GENS005) | Elective E-A (Writing and Presentation
Skills) | 2 | 2 | | | | | | | 2 | | <u>≅</u> | AERS121 | Fundamentals of Flight | 2 | 1 | | 1 | 2 | | | | 4 | | | MDPS001 | Fundamentals of Manufacturing
Engineering | 2 | 1 | | 1 | 2 | | | | 4 | | | MTHS005 | Introduction to Probability and Statistics | 3 | 2 | 2 | | | | | | 4 | | | | Sub-Total | 19 | 13 | 6 | 4 | 5 | 0 | 0 | 0 | 28 | | | | | 30 m | Lec Lab Stud HTut Cotal | | | | | | | | | | |----------|---------|---|------|-------------------------|---------|---------|-----|------|---------|--------|-------|--|--| | s | Code | Name | | Lec | Tut (2) | App Tut | Lab | Stud | Off Tut | Off Hr | Total | | | | 3 | | Elective E-A (Fund. of Ecconomics and Accounting) | 2 | 2 | | | | | | | 2 | | | | 8 | MTHS104 | Differential Equations | 3 | 2 | 2 | J5 | | | | | 4 | | | | E | | Fundamentals of Thermodynamics | 3 | 2 | | 2 | 1 | | | | 5 | | | | E | AERS211 | Fluid Mechanics | 3 | 2 | 2 | | | | | | 4 | | | | SEMESTER | MTHS102 | Linear Algebra and Multivariable Integrals | 3 | 2 | 2 | | | | 5 1 | | 4 | | | | S | EPES201 | Electrical Engineering Fundamen:als | 3 | 2 | | 1 | 2 | | | | 5 | | | | | AERS212 | Materials Science for Engineering | 2 | 1 | | 2 | 1 | | | | 4 | | | | | | Sub-Total | 19 | 13 | 6 | 5 | 4 | 0 | 0 | 0 | 28 | | | | | | | 50.50.7505 | / | | Cor | itac | t Ho | ours | | | |----------|-----------|--|------------|-----|---------|----------|------|------|---------|----------|-------| | s | Code | Name | Credit | Lec | Tut (2) | App. Tut | Lab | Stud | Off Tut | Off. Hrs | Total | | Г | INTS216 | Computer Aided Machine Drawing | 3 | 2 | | | 3 | | | | 5 | | 4 | AERS221 | Gas Dynamics | 3 | 2 | | 1 | 2 | | | | 5 | | 12 | AERS214 | System Dynamics and modeling | 3 | 2 | 2 | 100 | | | | | 4 | | SEMESTER | (GENS110) | Elective E-A (Fundamental of Management, Risk and Environment) | 166 | 2 | g | Pr | of | es | sic | n | 2 | | | AERS228 | Aviation Economics | 2 | 1 | 2 | | | | | | 3 | | S | MDPS362 | Operations Research I | 3 | 2 | | 3 | | _ | | | 5 | | | AERS222 | Strength of Materials | 3 | 2 | 2 | | | | 9 | | 4 | | | | Sub-Total | 19 | 13 | 6 | 4 | 5 | 0 | 0 | 0 | 28 | | | | | | | | Cor | tac | t Ho | urs | | | |----------|---------|--------------------------------|--------|-----|---------|---------|-----|------|---------|--------|-------| | s | Code | Name | Credit | Lec | Tut (2) | App Tut | Lab | Stud | Off Tut | Off Hr | Total | | | GENS2XX | UR - ELECTIVE - E-1 | 2 | 2 | | | | | | | 2 | | 2 | MTHS203 | Complex Functions | 2 | 1 | | 3 | | | 8_3 | | 4 | | SEMESTER | AERS311 | Aerodynamics | 3 | 2 | | 1 | 2 | | | | 5 | | S | AERS313 | Aircraft Jet Engine Components | 3 | 2 | 2 | | | | | | 4 | | M | AERS314 | Automatic Control | 3 | 2
 2 | | | | | - 1 | 4 | | III | AERSXXX | ELECTIVE (1) - E-2 | 3 | 2 | 2 | | | | | | 4 | | 0, | AERS312 | Mechanics of Structures 1 | 3 | 2 | 100 | 1 | 2 | | | | 5 | | | | Sub-Total | 19 | 13 | 6 | 5 | 4 | 0 | 0 | 0 | 28 | | | | | | / | 7 | Cor | itac | t Ho | ours | | | |----------|---------|------------------------------------|--------|-----|---------|----------|------|----------------|---------|----------|-------| | s | Code | Name | Credit | Lec | Tut (2) | App. Tut | Lab | Stud | Off Tut | Off. Hrs | Total | | | AERSXXX | ELECTIVE (2) - E-2 | 3 | 2 | 2 | | | | | | 4 | | 9 | | Engineering Seminar | 1 | 1 | | | | | | | 1 | | 12 | AERS321 | Aircraft Performance and Stability | 3 | 2 | 2 | | | | | | 4 | | SEMESTER | AERS325 | Aircraft Engine Construction | 20 | 1 | CC | 3 | of | 00 | oic | m | 4 | | 巡 | AERS322 | Mechanics of Structures 2 | 3 | 2 | 2 | | U | \overline{G} | 216 | Ш | 4 | | | AERS323 | Aircraft Engine Performance | 3 | 2 | 2 | | | | | | 4 | | S | | Aircraft Systems | 2 | 1 | | 3 | | Ĺ | | | 4 | | | AERSXXX | ELECTIVE (3) - E-2 | 2 | 1 | 2 | | | | | | 3 | | | | Sub-Total | 19 | 12 | 10 | 6 | 0 | 0 | 0 | 0 | 28 | | | | | | | | Cor | tac | t Ho | urs | , | | |----------|---------|---------------------------------|--------|-----|---------|---------|-----|------|---------|-------|-------| | s | Code | Name | Credit | Lec | Tut (2) | App Tut | Lab | Stud | Off Tut | OffHr | Total | | | AEMS481 | Graduation Project-1 | 1 | 1 | | | | | | | 1 | | 7 | AERSXXX | ELECTIVE (4) - E-2 | 2 | 1 | 2 | | | | 8_8 | | 3 | | 8 | AERSXXX | ELECTIVE (5) - E-2 | 2 | 1 | 2 | | | | | | 3 | | SEMESTER | AERS414 | Introduction to Microcontroller | 3 | 2 | | | 3 | | | | 5 | | 巡 | AERS416 | Airtransport System Analysis | 3 | 2 | | 1 | 2 | | | - | 5 | | 1 | AERS412 | Aircraft Structures | 3 | 2 | 2 | | | | | | 4 | | S | AERSXXX | ELECTIVE (6) - E-2 | 3 | 2 | 2 | | | | | | 4 | | | AERSXXX | ELECTIVE (7) - E-2 | 2 | 1 | 2 | | | | Box. | | 3 | | | | Sub-Total | 19 | 12 | 10 | 1 | 5 | 0 | 0 | 0 | 28 | | | | | / | | | Cor | itac | t Ho | ours | | | |----------|---------|---|--------|-----|---------|----------|------|------|---------|----------|-------| | s | Code | Name | Credit | rec | Tut (2) | App. Tut | Lab | Stud | Off Tut | Off. Hrs | Total | | | AEMS482 | Graduation Project-2 | 3 | 1 | | 3 | | | | | 4 | | 8 | | Aviation Laws, Legislations and Airworthiness | 2 | 1 | ~ | 3 | of | 00 | oid | 202 | 4 | | SEMESTER | AERSXXX | ELECTIVE (8) - E-2 | 3 | 2 | 2 | | U | U O | 211 | 111 | 4 | | 员 | | ELECTIVE (9) - E-2 | 3 | 2 | 2 | | | | | | 4 | | | AERSXXX | ELECTIVE (10) - E-2 | 3 | 2 | 2 | | | | | | 4 | | S | AERS424 | Flight Mechanics, Stability and Control | 3 | 2 | | 1 | 2 | | | | 5 | | | AERS428 | Aviation Organization | 2 | 1 | 2 | | | | | | 3 | | | | Sub-Total | 19 | 11 | 8 | 7 | 2 | 0 | 0 | 0 | 28 | ## توصيف المقررات COURSES CONTENTS | | | Credit | | | | Cont | act Ho | urs | | | |------------|--|--|------------------------------|--------------------------|---------------------------|------------------------------|---------------------------------|---------------------------------|-------------------------------|---------------------------------| | Code | Name/Content | Hours | Lec | Tut
(2) | App.
Tut | Lab | Stud | Off.
Tut | Off.
Hrs | Total | | Program | Courses Compulsory | | 10 0 | | | | | • | | 7- | | MDPS001 | Fundamentals of | 2 | 1 | 0 | 1 | 2 | | | | 4 | | | Manufacturing Engineering | | | | | | | | | | | | Pre-requisites: NONE | 10 | i e | | | | | | 100 | | | Deference | Engineering Materials - Elem
processes- metal forming pro-
cutting and finishing process | ocesses - S
es - Moder | Shapin
n Man | g of p | lastic nuring, a | nateria
idditive | l - Joini | ng prod
acturin | cesses
g and 3 | D printin | | References | Mikell P. Groover, Fundamer
Systems, 7th Edition, Wiley, | | aem iv | nanuta | acturing | g: iviate | enais, P | rocess | es, and | 1 | | MTHS104 | Differential Equations | 3 | 2 | 2 | 0 | 50 | | | | 4 | | W11110104 | Pre-requisites: MTHS003 | | | - | | 1. | _ | | | - | | References | theorems, convolution theorems, Fourier transfers. Fourier transfers 1-"A First Course in Differential Zill 2-"Fundamentals of Differential | orm.
I Equations | with M | lodelin | ıg Appli | cations | " 11th E | dition 2 | 2017, by | Dennis | | AER5221 | Gas Dynamics Pre-requisites: AERS211 | 3 | 2 | 0 | | 2 | | | | 5 | | | Review of Thermodynamic
Dimensional Compressible I
Steady One-Dimensional Flo
Normal and Oblique Sho
Laboratory Experiments. | Flow. Stead
ow with Frid
ock Waves | dy One
ction. S
s. Exp | e-Dim
Stead
pansio | ension
y One-
on Wa | al Isen
Dimen:
ives. (| tropic F
sional F
Quasi-C | low will
low will
one-Dir | ith Area
ith Hea
mensio | a Chang
t Transfe
nal Flo | | References | 1.R.D. Zucker & O. Biblarz , F 2.M.J. Zucrow & J.D. Hoffman 3. A. H. Shapiro, "The Dynamic
The Ronald press Company, N | , " Gas Dyna
s and Therr | amics "
modyna | edited | d by Joh | nn Wile | y & Sons | , 1976 | | | | | | Cun dia | | | | Cont | act Ho | ours | | | |---------------------------------------|---|--------------------------------------|-------------|---------------------------------|--|------------------------------|----------|-------------|-------------|---------------| | Code | Name/Content | Credit
Hours | Lec | Tut
(2) | App.
Tut | Lab | Stud | Off.
Tut | Off.
Hrs | Total | | AERS312 | Mechanics of Structures 1 | 3 | 2 | | 1 | 2 | | | | 5 | | | Pre-requisites: AERS222 | | | | ta: 0 | | | | | | | | General bending of beams
torsion of solid and thin wal
column stability. Laboratory
standard packages (Femap,) | led section | ns, sh | ear fl | ow in | open, | closed | and m | ulti-cel | I sections | | | T.H.G. Megson "Aircraft Strue | ctures for | Engine | ering | Studer | nts" | | | | | | AERS322 | Mechanics of Structures 2 | 3 | 2 | 2 | 100 | | | | | 4 | | | Pre-requisites: AERS222 | | | | | | | | | | | | Ansvs). | | | | | 511 | | | ionago | s (Femap | | References | Ansys).
THG. Megson, "Aircraft Struc | | - | 1 | Studen | ts". | | | ionage | | | References | | tures for E | ngine
2 | ering
2 | Studen | its". | | | L | s (Femap | | References
AERS314 | THG. Megson, "Aircraft Struc | | - | 1 | Studen | ts". | | | L | | | References
AERS314 | THG. Megson, "Aircraft Struct Automatic Control Pre-requisites: AERS214 Root locus method, frequence stability, Bode diagrams, freq | y domain
uency dor | 2
analys | 2
sis, Ny
esign, | quist s | stability
lag an | criterio | on, mea | asures | 4 of relative | | References
AERS314 | THG. Megson, "Aircraft Struct Automatic Control Pre-requisites: AERS214 Root locus method, frequence | y domain
uency dor
ing – 5th e | analys | 2
sis, Ny
esign,
– Kat | quist s
phase
suhiko | stability
lag an
Ogata | criterio | on, mea | asures | 4 of relative | | References
AERS314
References | THG. Megson, "Aircraft Struct Automatic Control Pre-requisites: AERS214 Root locus method, frequence stability, Bode diagrams, frequence 1. Modern Control Engineer | y domain
uency dor
ing – 5th e | analys | 2
sis, Ny
esign,
– Kat | quist s
phase
suhiko | stability
lag an
Ogata | criterio | on, mea | asures | 4 of relative | | References AERS314 References MDPS362 | THG. Megson, "Aircraft Struct Automatic Control Pre-requisites: AERS214 Root locus method, frequence stability, Bode diagrams, frequence 1. Modern Control Engineer 2. Control Systems Engineer | y domain
uency dor
ing – 5th e | analys | sis, Ny
esign,
- Kat | yquist s
phase
suhiko
prman § | stability
lag an
Ogata | criterio | on, mea | asures | of relative | | | | Credit | | | | Cont | act Ho | urs | | | |------------|--|---|---|---|---|---|---|---|---|--| | Code | Name/Content | Hours | Lec | Tut
(2) | App.
Tut | Lab | Stud | Off.
Tut | Off.
Hrs | Total | | AERS420 | Aviation Laws, Legislations
and Airworthiness | 2 | 1 | 0 | 3 | | | | | 4 | | | Pre-requisites: 110 Credits | | 0.00 | 6 | 35 | ů. | 700 | 300 | 50 | | | | Introduction to Aviation Law
Regulating Organizations, IAT
certification requirements data
configurations control proced
failure analysis and investigal
monitoring techniques. Prepates
Establishment of Aircraft and
program. Preparation of Spe-
Standard documentation and | A, FAA a
a sheet s
ures. Rel
tions. Pre
rations of
d compo
ecial oper
 tandar
iability
paration
Flight
nents | SA. A
ds. Ai
contr
ons of
-tests
Maint
progra | irworth
rworthi
rol progra
progra
progra
tenance | iness.
iness D
gram e
ams for
ms. W
e prog | Aircraft
Directive
stablish
r Aircra
eight ai
ram ar | Config
es acco
ment a
ft/ Eng
nd bala
nd sam | guration
omplish
and co
sine pe
ance hi
opling | n and type
nment and
imponents
rformance
story files
inspection | | | 1. Chicago convention 1944 2. ICAO ANNEXs From anne | x 1 to an | nex 19 | | | 点 | | | D | | | | e Courses (Compulsory) | | | | | <u>_</u> | | | | | | AERS121 | Fundamentals of Flight | 2 | 1 | 10 | 1 | 2 | | | | 4 | | | Pre-requisites: 18 Credits | | | | 1 | | | _ | - [| | | | Aviation history. History of fl
configurations. Standard atm
reaction principle, jet engines. | nosphere. | Elem | ents | of pro | pulsion | r: prop | ellers, | piston | engines | | References | Shevel,R.S.,"Fundamenta Anderson, J.D., "Introducti | ls of Fligh | t" ,2nd | Editio | n, Prer | ntice H | all,1989 |) | | | | AERS212 | Materials Science for
Engineering
Pre-requisites: PHYS001 | s of | Eh | gin | eer | ng | Pro | fes | sior | 4 | | | Introduction to materials en
structures, crystal imperfectio
and plastic deformation, phas
Composite materials. | ns, Diffus | icn, M | lechar | nical pr | opertie | s, Stre | ngthen | ing me | chanisms | | References | 1. W. D. Callister, Jr. and D.
2013
2. A. P. Mouritz, Introduction | | | | | | | | | ed. Wiley, | | | | Credit | | | | Conta | act Ho | urs | | | |-----------------------|--|--|--|--|--|--|--|---
--|--| | Code | Name/Content | Hours | Lec | Tut
(2) | App.
Tut | Lab | Stud | Off.
Tut | Off.
Hrs | Total | | AERS213 | Fundamentals of
Thermodynamics | 3 | 2 | | 2 | 1 | | | | 5 | | | Pre-requisites: PHYS001 | W. | 80 | | 38 10 | | | | 20 | | | | Introduction, concepts and of
thermodynamics, application
second law, entropy, applica
Steady state conduction, tra | ns on first
tions on er
ansient co | law.
ntropy,
nducti | Secon
irreve
on. Th | d law
ersibility
nermal | of the
and a
bound | rmodyn
vailabil
ary lay | amics,
ity. Exe
er. Na | applic
ergy. | ations or | | References | convection. Radiation. boiling 1. M. J. Morgan and H. N. S 5th Edition, John Willey, a 2. Hollman and Cengel for h Applications | hapiro. Fu
and Sons 2 | ndame
2004. | entals | of Eng | ineerin | g Therr | nodyna | | d | | AERS211 | Fluid Mechanics | 3 | 2 | 2 | | A | | | | 4 | | ILI TOLIT | | | - | | | | | | | | | | Pre-requisites: PHYS001, Mi
Fluid kinematics, flow types,
momentum, and Energy eq | Integral a | | is of f | | | | | | | | References | Fluid kinematics, flow types, momentum and Energy eq modeling, Viscous flow in Laboratory Experiments. Co. 1. Bruce R. Munson, Dona | Integral a
uations, A
pipes ar
urse project
ald F. you | pplica
no du
et com | is of fl
ations.
cts. F | Similif
Flow noriented | tude a
neasur
d. | nd dim
ement. | ension
Gene | al ana
ral ap | llysis and | | References | Fluid kinematics, flow types,
momentum and Energy eq
modeling, Viscous flow in
Laboratory Experiments. Cou | Integral a
uations, A
pipes ar
urse project
ald F. you
& Sons. | pplica
nd du
t com
ng, ar | is of flations.
cts. F
puter o | Similification of similar section of similar sections s | tude a
neasured.
H. O | nd dim
ement.
kiishi, ' | Gene
'Funda | al ana
ral ap
menta | lysis and
plications | | References
AERS222 | Fluid kinematics, flow types, momentum and Energy eq modeling, Viscous flow in Laboratory Experiments. Court 1. Bruce R. Munson, Dona mechanics", John Wiley 2. Yunus A. Cengel and John McGraw Hill. Strength of Materials Pre-requisites: AERS212 | Integral a
uations, A
pipes ar
urse project
ald F. you
& Sons.
In M. Cimb | opplica
no du
et com
ng, ai
pala, "l | is of flations.
cts. Fouter on The | Similification in the control of | tude a neasured. H. Onics -Fu | nd dim
ement.
kiishi, '
undame | ension
Gene
'Funda
entals a | al ana
ral ap
menta
and Ap | lysis and
plications
is of fluid
plications | | | Fluid kinematics, flow types, momentum and Energy eq modeling, Viscous flow in Laboratory Experiments. Court 1. Bruce R. Munson, Dona mechanics", John Wiley 2. Yunus A. Cengel and John McGraw Hill. Strength of Materials Pre-requisites: AERS212 Analysis of stress and strain | Integral a uations, A pipes ar urse project & Sons. In M. Cimb | pplica
nc du
et com
ng, ar
pala, "I | is of flations.
cts. Fouter ond The | Similification in contents of the codore | tude a
neasured.
H. O
nics -Fu | nd dim
ement.
kiishi, '
undame
working | ension
Gene
Funda
entals a | mental and Applements | lysis and plications of fluid plications | | | Fluid kinematics, flow types, momentum and Energy eq modeling, Viscous flow in Laboratory Experiments. Cours 1. Bruce R. Munson, Dona mechanics", John Wiley 2. Yunus A. Cengel and John McGraw Hill. Strength of Materials Pre-requisites: AERS212 Analysis of stress and strain to structural analysis. Analy | Integral a uations, A pipes ar urse project & Sons. In M. Cimb | pplicance du
et coming, and
pala, "I | is of flations. cts. Fronter of the T | Similification in Similificati | tude a neasured. H. Onics -Function of the control | nd dim
ement.
kiishi, '
undame
working
skeletal | ension
Gene
Funda
entals a
stress
struct | mental and Applemental and Applemental ses. Intures. | lysis and plications sof fluid plications 4 troduction for sion of the street s | | | Fluid kinematics, flow types, momentum and Energy eq modeling, Viscous flow in Laboratory Experiments. Cours 1. Bruce R. Munson, Dona mechanics", John Wiley 2. Yunus A. Cengel and John McGraw Hill. Strength of Materials Pre-requisites: AERS212 Analysis of stress and strain to structural analysis. Analycircular shafts. Axial force, | Integral a uations, A pipes ar urse project ald F. you & Sons. In M. Cimb | pplicance dust company, and pala, "I | is of flations. cts. Fronter of the fluid Market o | Similification in Similificati | tude a neasured. H. Onics -Function of the content | nd dim
ement.
kiishi, '
undame
working
skeletal
d twisti | Funda
entals a
struct | mental and Applement Apple | lysis and plications as of fluid plications at troduction of diagrams | | | Fluid kinematics, flow types, momentum and Energy eq modeling, Viscous flow in Laboratory Experiments. Cours 1. Bruce R. Munson, Dona mechanics", John Wiley 2. Yunus A. Cengel and John McGraw Hill. Strength of Materials Pre-requisites: AERS212 Analysis of stress and strain to structural analysis. Analycircular shafts. Axial force, Stress and strain diagrams | Integral a uations, A pipes ar urse project & Sons. In M. Cimbons of States of States and trans | pplicance dust company, and pala, "I | is of flations. cts. Fouter of the fluid Market Marke | Similification in Similificati | tude a neasured. H. Onics -Function of | nd dimement. kiishi, ' undame working skeletal d twisti beams | Funda
Funda
entals a
stress
struct
ng mo | mental and Applement Apple | lysis and plications as of fluid plications at troduction of diagrams | | AERS222 | Fluid kinematics, flow types, momentum and Energy eq modeling,
Viscous flow in Laboratory Experiments. Cours 1. Bruce R. Munson, Dona mechanics", John Wiley 2. Yunus A. Cengel and John McGraw Hill. Strength of Materials Pre-requisites: AERS212 Analysis of stress and strain to structural analysis. Analycircular shafts. Axial force, | Integral a uations, A pipes ar urse project ald F. you & Sons. In M. Cimb 3 . Strength sis of statishear for and trans. Experimen, J. T. Dev | pplicance dust commung, and calla, "I | is of flations. cts. Frouter of the fluid No. 2 personal fluid No. ending tions. neasur | Similification in the control of | tude aneasured. H. Onics -Function of deflet | kiishi, ' undame working skeletal d twisti beams ection a | Funda
entals a
struct
of syrind strain | mental and Applement Apple | lysis and plications as of fluid plications 4 troduction for sion of diagrams cal cross | | | | Cundit | | | | Conta | act Ho | urs | | | |------------|--|---|--------------------------------|-----------------------------------|--|---|--------------------------|------------------------|-------------------------------|--| | Code | Name/Content | Credit
Hours | _ec | Tut
(2) | App.
Tut | Lab | Stud | Off.
Tut | Off.
Hrs | Total | | MTHS102 | Linear Algebra and
Multivariable Integrals | 3 | 2 | 2 | 0 | | | | | 4 | | | Pre-requisites: MTHS003 | - 10 | | | | - | t. | | | | | | Solving Linear Systems, | Vector Sr | aces | and | Subsc | aces. | Inner | Produ | ct Spa | aces an | | | Orthonormal Bases, The | | | | | | | | | | | | Functions of Matrices. Fund | | | | _ | | | | | The second secon | | | its Applications, Vector F | | | | | | | | | | | | Applications, Line and Surfa | | | | The state of s | | 951 2000 | | | | | References | 1. "Calculus Early Transcen- | | | | | | on, 201 | 5, Cen | gage L | earning. | | | 2. "Elementary Linear Algeb | | | | | | | | | | | | international edition. | | | | | | | | | | | EPES201 | Electrical Engineering | 3 | 2 | 1 | 2 | | 8 | | | 5 | | | Fundamentals | | | | | Α. | | | 100 | | | | Pre-requisites: PHYS002 | * | | | | | | - | | | | | values, voltage and curre
representations of sine v
correction). Three phase ci
loads, three phase power). | vaves, cor
rcuits (line | cept
and pl | of in | npedan
oltage | ce, po
s, star | ower a | nalysis | , pow | er facto | | References | "Principles and Application | | | | | | | gio R | izzoni, | Secon | | INTS216 | Computer Aided Machine
Drawing | KS Of | 2 | gin | eer | 13 | Pro | res | sior | 5 | | | Pre-requisites: INTS001 | Drawing of Mechanical Par | ts and its A | Assem | ıbly | Assem | bly De | sign Co | nside | ations | - Surfac | | | Drawing of Mechanical Par
Roughness - Fittings and To | lerances - | Machi | ning a | nd Fini | ishing I | Marks - | Comp | uter Aid | ded Thre | | | Roughness - Fittings and To
Dimensional Mechanical D | lerances -
rawings - | Machi
Crawi | ning a | nd Fini
Powe | shing I | Marks -
Parts | Comp
and it | uter Aid
s asse | ded Thre
mbly an | | | Roughness - Fittings and To | lerances -
rawings - | Machi
Crawi | ning a | nd Fini
Powe | shing I | Marks -
Parts | Comp
and it | uter Aid
s asse | ded Thre
mbly an | | | Roughness - Fittings and To
Dimensional Mechanical D | lerances -
rawings - | Machi
Crawi | ning a | nd Fini
Powe | shing I | Marks -
Parts | Comp
and it | uter Aid
s asse | ded Thre
mbly an | | | Roughness - Fittings and To
Dimensional Mechanical D
Kinematic Simulation – A
Engineering Solvers.
Introduction to Bolted, Rivet | olerances -
rawings –
auto Asser
ed,Bonded, | Machi
Crawi
nbly | ning a
ng of
– Dra | Power | shing I
Train
– CAI | Marks -
Parts
Prog | Comp
and it
rams | uter Aid
s asse
Integra | ded Thre
mbly an
ation wit | | References | Roughness - Fittings and To
Dimensional Mechanical D
Kinematic Simulation – A
Engineering Solvers.
Introduction to Bolted, Rivet
1. Narayana, Machine D | olerances -
rawings –
auto Asser
ed,Bonded,
Orawing. | Machi
Crawi
nbly | ning a
ng of
– Dra | Power | shing I
Train
– CAI | Marks -
Parts
Prog | Comp
and it
rams | uter Aid
s asse
Integra | ded Thre
mbly an
ation wit | | References | Roughness - Fittings and To
Dimensional Mechanical D
Kinematic Simulation – A
Engineering Solvers.
Introduction to Bolted, Rivet | olerances -
rawings –
Auto Asser
ed,Bonded,
Orawing.
ing design. | Machi
Crawi
nbly
Weld | ning a
ng of
– Dra
ed Co | nd Fini
Power
afting | ishing I
r Train
– CAI
ons, ge | Marks -
Parts
Prog | Comp
and it
rams | uter Aid
s asse
Integra | ded Thre
mbly ar
ation wi | | | | Credit | | | | Cont | act Ho | urs | | | |------------|--|---|-----------------------------|-------------------|--------------------------------|----------------------------|------------------------------------|----------------------------|---------------------------------|-----------------------------------| | Code | Name/Content | Hours | _ec | Tut
(2) | App.
Tut | Lab | Stud | Off.
Tut | Off.
Hrs | Total | | AERS214 | System Dynamics and
modeling | 3 | 2 | 2 | | | | | | 4 | | | Pre-requisites: MTHS104 | - 200
200
200 | 001 | | 337 | 2 | 10 | 20- | | | |
| System dynamics: Models
Effect of feedback, stability,
and PID controllers. Static a | transient re | spons | e. An | alog si | mulatio | n. Type | es of co | ontrolle | | | References | | ntrol System
trol System
I Systems ." | Engii
s " | neerin | | | | | | | | AERS228 | Aviation Economics | 2 | 1 | 2 | | | | Till term | | 3 | | | Pre-requisites: GENS120 | | | | | | | | | | | References | models as well as airport
examines financial issues
financing (runways, termin
aviation services, introduction
Bijan Vasigh, Ken Fleming | related to a
hals, hanga
on of new te | ai craf
rs, air
chnol | t acqu
navi | uisition
gation
in air n | and s
contro
avigati | ales as
I faciliti
on will b | s well
es an
be exar | as infra
d pricion
mined. | astructure
ng of the | | | Applications". | | | | 1 | | | The same of | | | | MTHS203 | Complex Functions | 2 | 1 | | 3 | | | | | 4 | | | Pre-requisites: MTHS102, N | MTHS104 | | | | , | | | | | | 9 | This course introduces con
The following topics will b | e discussed | d: the | comp | lex pla | ane, de | efinition | of co | mplex | | | o | analytic functions and Ca
theorems and formulas, so
Laurent series, isolated s | equence re | preser | tation | s of c | omplex | function | ons: Ta | aylor s | s integra
eries an | | References | theorems and formulas, se | equence re
singularities | oreser
and | ntation
residu | is of c | omplex | function function | ons: Ta
pings, | aylor s
and S | s integra
eries an
schwarz- | | | | Credit | | | | Cont | act Ho | urs | | | |---------|-------------------------|--------|-----|------------|-------------|------|--------|-------------|-------------|-------| | Code | Name/Content | Hours | Lec | Tut
(2) | App.
Tut | Lab | Stud | Off.
Tut | Off.
Hrs | Total | | AERS311 | Aerodynamics | 3 | 2 | | 1 | 2 | | | | 5 | | | Pre-requisites: AERS221 | - 2 | | | | | | | | | Basic Aerodynamics: Kinematics, Continuity and Bernoulli's Equations, Measurement of Airspeed, Boundary Layer Concept, Skin Friction, Pressure Drag, Flow Separation, Streamlining, Incompressible flow Over Airfoils: Vortex Sheet, Kutta Condition, Thin Airfoil Theory, Vortex Panel Method. Introduct on and application to Theory of Finite Wings: Liftingline Theory, Lifting-surface Theory, Propeller design, Airplane Drag; Complete Airplane Drag Polars, Clean Airplane, Flaps, Speec-Brakes and Landing Gear Effect, Airplane Drag Contributions, Inerference Drag, Laboratory Experiments. - References 1. Schilichting, H., "Boundary Layer Theory", 7th. Edition, McGraw-Hill, New York. - Anderson, J. D., "Fundamentals of Aerodynamics", McGraw-Hill, New York. - 3. Bertin, J.J. and Smith, M. L., "Aerodynamics for Engineers", Prentice Hall, Englewood Cliffs. - 4. N. J., 1979.Batchelor, G. K., "Introduction to Fluid Dynamics", Cambridge University Press. - Katz, J. and Allen Plotkin, "Low Speed Aerodynamics from Wing Theory to Panel Methods", McGraw Hill, New York. AERS313 Aircraft Jet Engine Components 4 Pre-requisites: AERS213, AERS221 Classification of aircraft propulsion systems. Shaft Engines: Piston Engines, Propfans engines, Turbomachines. Types of turbomachines, Centrifugal Compressor, radial turbines Definitions and general parameters of 2D cascades. Compressor 2D cascades, pitch line design of axial compressors, off design analysis, stall and compressor surge. Turbine 2D cascades, pitch line design of axial turbines, off design analysis, turbine cooling, 3D analysis of axial flow turbomachines, types of combustion chambers, Fuels, Biofuels, Fuel Cells, Conservation equations for reacting systems (Ecm solutions), combustion chamber aerodynamic performance. Injectors. Intakes: Internal/External Performance, Nozzles.Air pollution and Environmental effects. References An Introduction to Combustion (Concepts and Applications) Books. | 0.4 | | Credit | Contact Hours | | | | | | | | |------------|--|---|-------------------------|--------------------------|---------------------|------------------------------|------------------------|----------------------------|----------------------------|----------------------------------| | Code | Name/Content | Hours | Lec | Tut
(2) | App.
Tut | Lab | Stud | Off.
Tut | Off.
Hrs | Total | | AERS321 | Aircraft Performance and
Stability | 3 | 2 | 2 | | | | | | 4 | | | Pre-requisites: AERS311 Review of Aerodynamic I Equations of Motion. Ste Performance, Gliding Perfor off and Landing Performan Aircraft Equilibrium State, S longitudinal and Lateral Dynamics | ady Flight
mance, Ra
ce, Level
Static Stab | Perf
nge, E
Turn, | orman
ndura
Pull-u | nce: Lance. A p and | evel F
ccelera
Pull-do | light Fated Fligown ma | erform
tht Per
neuve | nance,
formar
rs, VN | Climbin
nce: Take
diagram | | References | | Introduc <mark>tior</mark>
Aircraft Per | forma | nce ar | nd Des | ign, 5th | Edition | | R. | | | AERS412 | Aircraft Structures Pre-requisites: AERS312 | 3 | 2 | 2 | | | | | 1 | 4 | | References | and construction. Fuselage connections. 1. Bruhn , Analysis and de 2. Logan, A first course in 3Ugural, Plates and shell | sign of fligh
the finite el | nt vehi
ement | cle str | uctures | | ear con | figurati | ons. Fi | ttings an | | AERS323 | Aircraft Engine Performance | | 2 | 2 | | | | | | 4 | | 21 | Pre-requisites: AERS313 Classification of Airplane Elengine components. Design Gas Turbine Engines: Sing Matching, Turbojet Engine, | ngines. Ov
Point Pe
gle Spool | rforma
Gas (| engine
ence c | of Aero | engine
atching | s. Off-
, Two | design
Spool | Perfor
Gas | nalysis o
mance o
Generato | | References | J.D.Mattingly, W.H.Hieser | D.H.Dale | y, "Ai | rcraft | Engin | e Desi | gn", 20 | 02. | | | | | Introduction to
Microcontroller | 4500 | 2 | | | 3 | | | | 5 | | | Pre-requisites: EPES201, Al
Hardware and software
programming, interfacing | organizatio | | | | | | | | languag
real-tim | 2. ECARS 147 | | | Credit | | | | Cont | act Ho | urs | | | | |------------|--|--|---------------------------------------|--------------------------------|--------------------------------------|---|--|--------------------------------------|-------------------------------------|--|--| | Code | Name/Content | Hours | Lec | Tut
(2) | App.
Tut | Lab | Stud | Off.
Tut | Off.
Hrs | Total | | | AERS416 | Airtransport System Analysis | 3 | 2 | | 1 | 2 | | | | 5 | | | | Pre-requisites: MDPS362, MT | HS003 | | | | | | | | | | | | The systems approach. The | analysis a | and m | odellir | ng of th | ne pro | cesses | and or | peratio | ns carrie | | | | out in all three parts of the ai | | | | | | | | | | | | | (an introduction). The analys | is and m | odellin | ng of t | the cap | pacity, | quality | and e | conom | ics of th | | | | service offered. Analytical and simulation models of the systems operations supported by | | | | | | | | | | | | | appropriate analysis of real-w | | | | | | A11 | | 100 mm | | | | References | 1. Abdelghany, Ahmed F A | bdelghan | y, Kha | aled, A | irline n | etwork | plannir | ng and | sched | uling, | | | | John Wiley Sons (2019). | | | | | | | | | | | | | 2. Ahmed Abdelghany, Khale | ed Abdelg | hany - | - Mode | eling Ap | oplicati | ons in t | he Airli | ine Indi | ustry - | | | _ | Ashgate (2010) | | | | | | | | _ | | | | AERS315 | Aircraft Systems | 2 | 1 | | 3 | | | | | 4 | | | | Pre-requisites: 85 Credits System designs and basic requirements for certifications; redundancy, function and loa | | | | | | | | | | | | | feeding, Electric power gene surfaces, and the processes performance. Methods of Str Means of aircraft Structure elemaintenance work. Procedur Standards used for aircraft techniques. | s of insp
ructure ar
ectrical bo
res for a | ecting
nc fue
anding
ircraft | and
I tank
Safe
outer | adjust
s seali
ty prec
skin | ing the
ng, mo
autions
paintin | em to
pisture
s and c
g, pain | ensure
trappin
onside
repai | corre
g & ar
rations
r and | ct aircrated drains in aircrate touchups | | | References | 1. ICAO Training Manual Par | 13-10f | Eng | gin | eeri | ng | Pro | fes | sior | eservation | | | 9 | 2. ECARS 147 | 72 OI | Eng | gin | eeri | ng | Pro | fes | sior | | | | AERS325 | 2. ECARS 147 Aircraft Engine Construction | 2 | Eng | gin | eeri
3 | ng | Pro | fes | sior | eservation 4 | | | U | Aircraft Engine Construction Pre-requisites: AERS313, 85 | 2
Credits | | gin | | ng | Pro | fes: | sior | 4 | | | 9 | 2. ECARS 147 Aircraft Engine Construction Pre-requisites: AERS313, 85 Nacelle-air-inlet: function, cor | 2
Credits | , mate | | Compr | | | | | 4 | | | 9 | 2. ECARS 147 Aircraft Engine Construction Pre-requisites: AERS313, 85 Nacelle-air-inlet: function, cor axial flow compressors, con | 2
Credits
enstruction
enpressor | , mate | -varial | Comprole sta | tor va | nes, ai | r blee | d-varia | 4
npressors
ble blee | | | 9 | Aircraft Engine Construction Pre-requisites: AERS313, 85 Nacelle-air-inlet: function, cor axial flow compressors, con valve, materials, balancing. | 2
Credits
nstruction
npressor
Combus | , mate
surge
ston | -varial | Comprole sta | itor va | nes, ai
upply, | r blee
Types |
d-varia
of co | 4 npressors ble bleecombustion | | | 9 | 2. ECARS 147 Aircraft Engine Construction Pre-requisites: AERS313, 85 Nacelle-air-inlet: function, cor axial flow compressors, con | 2
Credits
nstruction
npressor
Combuserials. Tu | , mate
surge
ston
irbines | -varial
chami
s: con | Comprole sta | itor va | nes, ai
upply, | r blee
Types | d-varia
of co | 4 npressors ble blee | | | | | Credit | | | | Conta | act Ho | urs | | | |--------------|--|-------------|---------|------------|-------------|--------|--------|-------------|-------------|---------| | Code | Name/Content | Hours | Lec | Tut
(2) | App.
Tut | Lab | Stud | Off.
Tut | Off.
Hrs | Total | | AERS424 | Flight Mechanics, Stability and Control | 3 | 2 | | 1 | 2 | | | | 5 | | References | Pre-requisites: AERS314, All
Aircraft Static Stability and (
Roll Stability, Roll Control.
Autopilots. | Control, Lo | ngitud | inal, L | | | | | | | | References | R. C. Nelson. Flight Stability | and Auton | natic C | ontro | . McGr | aw-Hil | l, | S7 | | | | AERS428 | Aviation Organization | 2 | 1 | 2 | 0 | | | | | 3 | | | Pre-requisites: 110 Credits | | | | | | | | | | | | "Safety Management" 2- Federal Aviation Regulation 3- EASA Part M for Continuous Production organizations. 4- Flight Operations and Safe | nuing Airv | vorthin | | | | | rt 21 | for De | sign an | | Drogram (| 5- ISO 9001- 2015.
Courses (Electives) | | 1 | | -1 | | | | | | | Elective E-3 | | | | | | | | | | | | | Machine Elements Pre-requisites: INTS216 Bolted, Riveted,Bonded, and clutches, springs, aircraft will bearing, ball screw actuators | heel brake | s, hyd | Iraulic | | | | | | ~ | | References | | gineering | Design | | | | | | | | | | | Credit | Contact Hours | | | | | | | | | |---------|---|--|--|--|--|--|---|--|---|---|--| | Code | Name/Content | Hours | Lec | Tut
(2) | App.
Tut | Lab | Stud | Off.
Tut | Off.
Hrs | Total | | | AERS349 | Manufacturing processes for
Aerospace | 3 | 2 | | | 2 | | | | 4 | | | | Pre-requisites: MDPS001 | | | | | | | | | | | | | casting; cast metals; molding Forming: Metal forming processes yield criterion; estimation of for processes; features of differ processes including turning, in surface finish, and cutting flutheir characteristics; fluxes and metallurgical characteristics introduction and definitions, it | ess class
orce and e
ent types
nilling, sha
ids. Weld
of weld | ification
energy
s of n
aping,
ding: V
s; well
ed jo | n, ba
requi
netal
drillin
Veldin
dabilit
ints; | rement
forming
g, and
ng proc
y and weld | etal works; tech
g dies
grindir
esses
welding
testing | nnology Metal ng. Tool weldin g of vari | oncept
of she
cutting
mater
g ener
ious m | s and et meta
g: meta
ials and
gy sou
etals a | plasticity
al forming
al cutting
d tool life
irces and
alloys
detrology | | References AERS327 Human Resource Management Pre-requisites: GENS110 Labor/management relations. Motivation. Leadership-Communication. 1. Aswathappa. K. (2008), Human Resource and Personnel Management (5th edition), Tata McGraw-Hill Publishing Company Ltd., New Delhi. HR planning: Job analysis, demand for HR, Supply of HR – Staffing: Recruitment, Selection – Training and development – Teamwork and Leadership -Performance Appraisal – Compensation: Type of equity, Designing the pay structure, employee benefits. - Biswajeet Pattanayak (2001), Human Resource Management, Prentice Hall of India Pvt. Ltd., New Delhi. - Lloyed L. Byers and Leslie W. Rue (1997), Human Resource Management (5th edition), The McGraw-Hill Companies, USA. - Michael Armstrong (1999), A Handbook of Human Resource Management Practice (7th edition), Kogan Page Limited, 120 Pentonvelle Road, London. | | | Credit | | | | Cont | act Ho | urs | | | | | |--|---|---|--|--
--|-----------------------------|---|--|---|---|--|--| | Code | Name/Content | Hours | Lec | Tut
(2) | App.
Tut | Lab | Stud | Off.
Tut | Off.
Hrs | Total | | | | AERS336 | Logistics and Transportation | 2 | 1 | 2 | | | | | | 3 | | | | | Pre-requisites: MDPS362 | | | | | | | | | | | | | References | Warehouses classifications. Warehouse lay outs. Introduction to supply chains: the production distribution, and transportation of goods. Supply chain as a physical process and network design. Inventory costs and control. Spares quantity replenishment policy (order and critical limits). Components/ parts movement tracking procedures. Quarantine parts control as movement. Shelf time items identification and control. Spares storage and delivery policies (FIFO- FILO- LIFO- LILO). Handling and transportation. | | | | | | | | | | | | | References | | | | | | //: | | 50 7 | | | | | | ERS434 | Digital Control Systems | 2 | 1 | 2 | | | | · . | | 3 | | | | A CONTRACTOR OF THE STATE TH | Pre-requisites: AERS314 | | | | | | | | | | | | | | Stability Transient Response | e- Desiar | of I | Digital | Syste | ms. A | naivsis | IVILITIV | ariable | Discrete | | | | References | 2. Dogan Ibrahim, "Microcoi | ls of Bode
troller Bas
ntroller Ba | and I | Nyquis | t Optin
Digital | num C | ontrol. | n Wiley | & Son | s, 2006. | | | | References
AERS422 | Systems, Root Locus, Method 1. Dogan Ibrahim, "Microcont | ls of Bode
troller Bas
ntroller Ba | and I | Nyquis | t Optin
Digital | num C | ontrol. | n Wiley | & Son | s, 2006. | | | | | 1. Dogan Ibrahim, "Microcont
2. Dogan Ibrahim, "Microcon
Science & Technology Books
Introduction to Composite | s of Bode
roller Bas
ntroller Bas
, 2002. | and I
ed Ap
ased | Nyquis
oplied (
Tempe | t Optin
Digital | num C | ontrol. | n Wiley | & Son | s, 2006.
Elsevie | | | | | Systems, Root Locus, Method 1. Dogan Ibrahim, "Microcont 2. Dogan Ibrahim, "Microcont Science & Technology Books Introduction to Composite materials Pre-requisites: AERS312 Introduction, definition, class | Is of Bode
troller Bas
ntroller Bas
s, 2002. | and led Apased | Nyquis
oplied I
Tempo
2 | of unid | num C
Contro
Moni | ontrol. I", Johr toring a | n Wiley | & Son
entrol", | s, 2006.
Elsevie
3 | | | | | Systems, Root Locus, Method 1. Dogan Ibrahim, "Microcont 2. Dogan Ibrahim, "Microcont Science & Technology Books Introduction to Composite materials Pre-requisites: AERS312 Introduction, definition, class lamina, and laminate, cons | ification, | and I
ed Ap
ased
1
behav | Nyquis oplied [Tempe 2 viors of all lam | of unid | Contro
Moni
irectio | ontrol. I", Johr toring a | n Wiley
and Co | & Son
entrol", | s, 2006.
Elsevie
3
nalysis o
Desigr | | | | | Systems, Root Locus, Method 1. Dogan Ibrahim, "Microcont 2. Dogan Ibrahim, "Microcont Science & Technology Books Introduction to Composite materials Pre-requisites: AERS312 Introduction, definition, class lamina, and laminate, cons consideration, analysis of I mechanics, joints, and expensive and stiffness. Failure | ification, titutive claminates modes. | and led Apased 1 behaves assice after character of the control o | Nyquis polied I Tempo 2 viors of lame initia | of unide inate I failution. | irectio
theory | ontrol. I", Johr toring a nal con ter-lamir mechan | n Wiley
and Co | & Son
entrol",
es. Ar
esses,
esses, | s, 2006. Elsevie 3 nalysis o Design | | | | AERS422 | Systems, Root Locus, Method 1. Dogan Ibrahim, "Microcont 2. Dogan Ibrahim, "Microcont Science & Technology Books Introduction to Composite materials Pre-requisites: AERS312 Introduction, definition, class lamina, and laminate, cons consideration, analysis of I mechanics, joints, and expensive strength and stiffness. Failure strength, stiffness. Fabrication | ification, titutive claminates modes. | ed Apased 1 behavesical after characterions. | Nyquis pplied [Tempe 2 viors c al lam initia cterizal | of unide inate of under the th | irection theory Micro | ontrol. I", Johr toring a nal com therm ter-lamir mechan rse envi | n Wiley
and Co
nposite
nal stre
nar str
ics fac | & Son
entrol",
es. Ar
esses,
esses, | s, 2006. Elsevie 3 nalysis o Design | | | | | Systems, Root Locus, Method 1. Dogan Ibrahim, "Microcont 2. Dogan Ibrahim, "Microcont Science & Technology Books Introduction to Composite materials Pre-requisites: AERS312 Introduction, definition, class lamina, and laminate, cons consideration, analysis of I mechanics, joints, and expensive strength and stiffness. Fabrication 1. Ashton – Halpin – Petit, "A | ification, titutive claminates in Application, Primer of | ed Apased 1 behave assice after characterions. | Nyquis polied I Tempo 2 viors of al lame initial carrical mance inposite | of unide inate of under the th | irection theory Micro | ontrol. I", Johr toring a nal com therm ter-lamir mechan rse envi | n Wiley
and Co
nposite
nal stre
nar str
ics fac | & Son
entrol",
es. Ar
esses,
esses, | s, 2006. Elsevie 3 nalysis o Design | | | | AERS422 | Systems, Root Locus, Method 1. Dogan Ibrahim, "Microcont 2. Dogan Ibrahim, "Microcont Science & Technology Books Introduction to Composite materials Pre-requisites: AERS312 Introduction, definition, class lamina, and laminate, cons consideration, analysis of I mechanics, joints, and expensive strength and stiffness. Fabrication 1. Ashton – Halpin – Petit, "A 2. Jones, "Mechanics of Com | ification, titutive claminates modes. Primer or posite Ma | and led Apased 1 behave assice after characterions. n Contacterials | viors of all lam initia mance inposite s". | of unide inate under under Mater | irection Micro | ontrol. I", Johr toring a nal com therm ter-lamir mechan rse envi | n Wiley
and Co
nposite
nal stre
nar str
ics fac | & Son
entrol",
es. Ar
esses,
esses, | s, 2006. Elsevie 3 nalysis o Design | | | | AERS422 | Systems, Root Locus, Method 1. Dogan Ibrahim, "Microcont 2. Dogan Ibrahim, "Microcont Science & Technology Books Introduction to Composite materials Pre-requisites: AERS312 Introduction, definition, class lamina, and laminate, cons consideration, analysis of I mechanics, joints, and expensive strength and stiffness. Failure strength, stiffness. Fabrication 1. Ashton – Halpin – Petit, "A 2. Jones, "Mechanics of Com 3. Barbero, "Introduction to Com | ification, titutive claminates modes. Application posite Macomposite | ed Apased 1 behavessical after characterions. n Consterial Material | viors of all lame initial mance in posite s". rials De | of unide inate under Mater esign". | irection theory micro radve | ontrol. I", Johr toring a nal com therm ter-lamir mechan rse envi | n Wiley
and Co
nposite
nal stre
nar str
ics fac | & Son
entrol",
es. Ar
esses,
esses, | s, 2006. Elsevie 3 nalysis o Design | | | | AERS422 | Systems, Root Locus, Method 1. Dogan Ibrahim, "Microcont 2. Dogan Ibrahim, "Microcont Science & Technology Books Introduction to Composite materials Pre-requisites: AERS312 Introduction, definition, class lamina, and laminate, cons consideration, analysis of I mechanics, joints, and expensive strength and stiffness. Fabrication 1. Ashton – Halpin – Petit, "A 2. Jones, "Mechanics of Com | ification, titutive claminates modes. Primer of posite Material composite de aminated composite de aminated composite de aminated | ed Apased 1 behave assice after characterions. n Consterials Mater Company and | viors of all lame initial mance singles Deposite posite | of unide inate and under the under the under the esign". | irection theory micro radve | ontrol. I", Johr
toring a nal com therm ter-lamir mechan rse envi | n Wiley
and Co
nposite
nal stre
nar str
ics fac | & Son
entrol",
es. Ar
esses,
esses, | s, 2006. Elsevie 3 nalysis o Design | | | References | | | Credit
Hours | | | | Cont | act Ho | urs | | | | |------------|--|---|--|--|---|---|--|--|--|--|--| | Code | Name/Content | | Lec | Tut
(2) | App.
Tut | Lab | Stud | Off.
Tut | Off.
Hrs | Total | | | AERS446 | Airtransport Market Analysis
and Forecasting | 2 | 1 | ` | | 2 | | | | 3 | | | | Pre-requisites: GENS110, MTHS003 Airline Industry: Scope, Aircraft types, Aircraft Manufacturers, Types of services, Scheduland unscheduled flight services, Passenger Travel, Cargo Transport, Air Freight Forwarde Economic Impacts. Key Performance Indicators: Revenue Passenger kilometers, Yie Available Seat Kilometers, Unit costs, Passenger Impact factors. Seasonality. Airli Profitability and Revenue management Marketing Analysis: Growing Demand, Growth of Airline Passenger and Cargo Traffic, Fu Pricing, Fares, Capacity Management. Market Forecasting: Forecasting Methodologies: Quantitative and Qualitative Methodologies analysis, Time Horizons, Forecasting Accuracy, Growth of Passenger and Cargo Service Worldwide, Regional Breakdown. Low Cost carriers. Future Growth. Forecasting 19 | | | | | | | | | | | | References | Aviation Planning: air navigation Søren Bisgaard, and Murat K Wiley & Sons, Inc., 2011. | | | | | | | | | ple, Joh | | | AERS346 | Information Technology for
Airtransport Industry
Pre-requisites: GENS110, MT | 2 | 1 | 2 | - | | | | | 3 | | | S | Role of Information Technology of the air transportation. Air Level, Air Traffic Management Information Sharing Between Information Technologies, Gaflows, Sensors, Navigation, rairborne weather radars. Grawarning Systems (TAWS), Avoidance Systems (TCAS), system capacity, financial states. | r Transport System Operation and Big adio Controlle Airline I | Leve
Data
Data
Munity
Ed Fli
Busine | on Sys
I, Airlin
Databa
Veh
cation
Warn
ght Ir | stem E
ne Sys
ses. R
nicle S
, Flight
ning Sy
nto Te
nd Prof | lemen
tem L
oles o
ystem
t Safe
ystems
rrain
itability | ts, Air
evel. Air
of wirele
Level,
ty's, Au
(GPWS
(CFIT).
y Cycle | Transprine Floor And Information (Information (Informatio | ortation ight Open satellation Fort Contrain A Colling chall | n System
perations
lite-base
low, data
rol loops
warenes
sion and
lenges of | | System. References #### BYLAWS 2023 Bachelor of Science Degree Credit Hours System | Codo | | Credit | | | | Cont | Contact Hours | | | | | | | | | | |-----------------------|--|--|--|---|---|--|--|---|--|---|--|--|--|--|--|--| | Code | Name/Content | Hours | Lec | Tut
(2) | App.
Tut | Lab | Stud | Off.
Tut | Off.
Hrs | Total | | | | | | | | AERS433 | Aircraft Piston Engines | 2 | 1 | 2 | | | | | | 3 | | | | | | | | | Pre-requisites: AERS213 | | | | 7 | S | | | | | | | | | | | | References | Review of Thermodynamic Cycles. Aircraft piston engine operation, maintenance and repart Techniques of assembly and disassembly of engines using appropriate manuals a completing required documentation. Propeller System Integration. Learners will identify enging components and their functions. Ignition, induction, supercharging and turbocharging, exhaus and fuel systems including carburetors and injection. They will learn the operating principal and how to test, adjust, and install the systems. | | | | | | | | | | | | | | | | | References | | | , | 0.T.1. | | | | | | | | | | | | | | ERS435 | Aircraft Maintenance | 2 | 1 | 2 | | | | | | 3 | | | | | | | | | Systems Engineering | | | | | | | | | | | | | | | | | | Pre-requisites: AERS315, 85 | Credits | | | | 0 0 | | | | | | | | | | | | | Types of maintenance, mair etc, Standard practices at torque standards, Fasteners electric bonding standards, | nd standa
standards
and rep | rd do
s, Pro
air s | cumen
cesses
tandar | itation
s stand
ds. M | used
lards,
ethods | in aircra
fluid sp
of No | aft mai
ecifica
on-des | ntenan
tions s
tructive | ce work
tandards
testing | | | | | | | | | etc, Standard practices at
torque standards, Fasteners
electric bonding standards,
Chemical Processes, liquid p
Quality control and assurance
and techniques; safety precapressurized vessels practices
signs and signals, work on dis- | nd standards
standards
and rep
senetrant a
e of maint
autions and
s, fuel tands
sabled airc | rd do
s, Pro
air s
and m
tenand
d con
ks m | cument
cesses
tandar
agneti
ce. M
sidera
aintena | tation s stand ds. M c partic aintena tions, c ance p | used
lards,
ethods
cle me
ance a
dismar
ractice | in aircra
fluid sp
s of No
ethods. I
and Rep
ntling an
es, hand | aft mai
ecifica
on-des
Mainte
air ope
ad asse
dling h | ntenantions structive nance eration embly parard r | ce work
tandards
testing
Planning
practices
practices
materials | | | | | | | | Poforonoss | etc, Standard practices at
torque standards, Fasteners
electric bonding standards,
Chemical Processes, liquid p
Quality
control and assurance
and techniques; safety precapressurized vessels practices
signs and signals, work on disassemblies, Brakes, and Pain | nd standards
and representant are of maint
autions and
s, fuel tandards
sabled airconting. | rd do
s, Pro
air s
and m
tenand
d con
ks m | cument
cesses
tandar
agneti
ce. M
sidera
aintena | tation s stand ds. M c partic aintena tions, c ance p | used
lards,
ethods
cle me
ance a
dismar
ractice | in aircra
fluid sp
s of No
ethods. I
and Rep
ntling an
es, hand | aft mai
ecifica
on-des
Mainte
air ope
ad asse
dling h | ntenantions structive nance eration embly parard r | ce work
tandards
testing
Planning
practices
practices
materials | | | | | | | | References | etc, Standard practices at torque standards, Fasteners electric bonding standards, Chemical Processes, liquid populative control and assurance and techniques; safety precapressurized vessels practices signs and signals, work on disassemblies, Brakes, and Pain 1. ICAO Training Manual Pain | nd standards
and representant are of maint
autions and
s, fuel tandards
sabled airconting. | rd do
s, Pro
air s
and m
tenand
d con
ks m | cument
cesses
tandar
agneti
ce. M
sidera
aintena | tation s stand ds. M c partic aintena tions, c ance p | used
lards,
ethods
cle me
ance a
dismar
ractice | in aircra
fluid sp
s of No
ethods. I
and Rep
ntling an
es, hand | aft mai
ecifica
on-des
Mainte
air ope
ad asse
dling h | ntenantions structive nance eration embly parard r | ce work
tandards
testing
Planning
practices
practices
materials | | | | | | | | - (| etc, Standard practices at
torque standards, Fasteners
electric bonding standards,
Chemical Processes, liquid p
Quality control and assurance
and techniques; safety precapressurized vessels practices
signs and signals, work on disassemblies, Brakes, and Pain | and standards
and representant a
e of maint
autions and
s, fuel tandards
sabled airconting. | rd do
s, Pro
air s
and m
tenand
d con
ks m | cument
cesses
tandar
agneti
ce. M
sidera
aintena | tation s stand ds. M c partic aintena tions, c ance p | used
lards,
ethods
cle me
ance a
dismar
ractice | in aircra
fluid sp
s of No
ethods. I
and Rep
ntling an
es, hand | aft mai
ecifica
on-des
Mainte
air ope
ad asse
dling h | ntenantions structive nance eration embly parard r | ce work
tandards
testing
Planning
practices
practices
materials | | | | | | | | References
AERS334 | etc, Standard practices at torque standards, Fasteners electric bonding standards, Chemical Processes, liquid popularity control and assurance and techniques; safety precapressurized vessels practices signs and signals, work on disassemblies, Brakes, and Pair 1. ICAO Training Manual Pair 2. ECARS 147 Hydraulic and Pneumatic | and standards
and representant a
e of maint
autions and
s, fuel tandards
sabled airconting. | rd do s, Pro air s and m tenand d con ks m craft, a | cument
cesses
tandar
agneti
ce. M
sidera
aintena | tation s stand ds. M c partic aintena tions, c ance p | used
lards,
ethods
cle me
ance a
dismar
ractice
ery pra | in aircra
fluid sp
s of No
ethods. I
and Rep
ntling an
es, hand | aft mai
ecifica
on-des
Mainte
air ope
ad asse
dling h | ntenantions structive nance eration embly parard r | ce work
tandards
testing
Planning
practice
practices
materials
Rotatin | | | | | | | | - (| etc, Standard practices at torque standards, Fasteners electric bonding standards, Chemical Processes, liquid p Quality control and assurance and techniques; safety precapressurized vessels practices signs and signals, work on disassemblies, Brakes, and Pain 1. ICAO Training Manual Pain 2. ECARS 147 Hydraulic and Pneumatic Systems | standards
and rep
penetrant a
e of maint
autions and
s, fuel tand
sabled airconting. | rd do s, Pro air s and m tenand d con ks m craft, | cument
cesses
tandar
nagneti
ce. M
sidera
aintena
aircraft | tation
s stand
ds. Mo
c partion
aintenations, of
ance p | used lards, ethods cle me ance a dismar ractice ery pra | fluid sp
fluid sp
s of No
ethods. I
and Rep
ntling an
es, hand
actices. | aft mai
ecifica
on-des
Mainte
air ope
ad asse
dling hi | ntenantions s
tructive
nance
eration
embly p
azard r
plants, | ce work
tandards
testing
Planning
practice
practice
materials
Rotatin | | | | | | | | - (| etc, Standard practices at torque standards, Fasteners electric bonding standards, Chemical Processes, liquid populatity control and assurance and techniques; safety precapressurized vessels practices signs and signals, work on disassemblies, Brakes, and Pain 1. ICAO Training Manual Pain 2. ECARS 147 Hydraulic and Pneumatic Systems Pre-requisites: AERS314 | and standards and representant are of maint autions and sabled aircenting. | rd do s, Pro air s and m tenand d con les m traft, a | cument
cesses
tandar
nagneti
ce. M
sidera
aintena
aircraft | tation s stand ds. More particular aintenations, cance particular recovered | used lards, ethods cle me ance a dismar ractice ery pra | fluid sp
fluid sp
s of No
ethods. I
and Rep
ntling an
es, hand
actices. | aft mai
ecifica
on-des
Mainte
air ope
ad asse
dling hi
Power | ntenantions structive nance eration embly pazard replants, | ce work tandard tandard testing Planning practice practice material Rotatin | | | | | | | Wind Shear Alarm. Application on Airplane Hydraulic Systems: Control Surfaces System, Landing Gear System, Pneumatic System Design, Pneumatic System Contents, System Modeling, Pneumatic System Transfer Function and Application on Airplane Pneumatic project. #### BYLAWS 2023 Bachelor of Science Degree Credit Hours System | | | Credit | | | | Cont | act Ho | urs | | | | | |------------|--|--|--|---|--|--|--|---|--|--|--|--| | Code | Name/Content | Hours | Lec | Tut
(2) | App.
Tut | Lab | Stud | Off.
Tut | Off.
Hrs | Total | | | | AERS432 | Fracture Mechanics and
Structural Repair | 3 | 1 | ` ' | 2 | 1 | | | | 4 | | | | | Pre-requisites: AERS222 | | | | 57. | 70 | | 6.000 | | | | | | | Crack initiation, crack modes, Griffith approach, Irwin approach, Stress field intensity approach Critical crack opening, cracks emanating from notches, stable crack growth, fractutoughness, linear-elastic crack growth. Crack-tip plasticity. Energy balance approach. Elast plastic crack growth, J integral. Fatigue and creep crack growth. Fatigue failure and cree rapture. Rate-dependent and
time-dependent failures. Failure inspection and repair, structure. | | | | | | | | | | | | | AERS455 | reliability and life prediction, c
Aircraft Engine maintenance
systems | 3 | 2 | 2 | | | | | | 4 | | | | \ \ | Pre-requisites: AERS435, 85 | Credits | | | | | | | | | | | | | Inspection and service, starti deceleration checks. Engine procedures. Engine checking dimension identification, oil sports cell, Overhaul, Balancing preparation for transportation Heavy maintenance, module reception, disassembly, clear documentation. Theoretical balancing | shut down
g: Bore-s
ectrometr
g, Engine
Engine
larity. Over
hing, inspen | n nor
cope
y, rad
prior
de-pre
ection | mal/all
inspe
liograp
removeserva
il con
, inves | ction of the chickens c | of gas
pection
servation
TBO, | aning E
path,
n, ferrog
on, pos
allation
main | ngine p
defect
graphy,
t remover
prepar
overha | oarts. It
is map
vibration
val plugation s
aul pro | nspection
ping and
on check
gging and
tandards
ocedures | | | | References | ICAO Training Manual Para ECARS 147 | rt D-1 | | | | | | | | | | | | AERS436 | Airline Operation and Tack | (S Of | 2 | gin | eeri | ng | Pro | tes | sion | 4 | | | | | Pre-requisites: MDPS362, MT | | | | | | | | | | | | | | Review of optimization and i | mathemat | ical n | nodels | in En | gineer | ing, Lin | ear Pr | ogramr | ning (LP | | | References Massoud Bazargan, "Airline Operations and Scheduling", Second Edition, 2020 models; Integer Linear Programming (LP), Nonlinear Programming (NLP). Solutions using computer software. Network Flows, Flight Scheduling, Fleet Assignment, Aircraft Routing, Crew Scheduling, Manpower Planning, Maintenance Scheduling, Case studies. Course | | | Credit | | | | Cont | act Ho | urs | | | |------------|--|---|---|--|--|---|---|--|--|---| | Code | Name/Content | Hours | Lec | Tut
(2) | App.
Tut | Lab | Stud | Off.
Tut | Off.
Hrs | Total | | AERS317 | Maintenance systems
Management and Reliability | 3 | 2 | 2 | | | | | | 4 | | | Pre-requisites: MTHS003 Types of maintenance, FADE availability, maintainability, MTBUR/ EIFSDR/ ESVR, st systems, reliability control pro and its upper control limits, actions, systems with repair, spares, sparing criteria, pre- | dependab
tructure a
gram and
perform
repair of
dective n | il ty,
and si
I ts e
ance
ene
nainte | cost-e
tructure
ffect of
limits
wal prenance | ffective
e funct
n perfo
excee
ocess | eness.
tions (
ermand
edance
and re | Reliab
(series/p
ce and c
inestig
enewal | ility fu
parallel
cost, pe
gations
functio | nctions
/(m,n)),
erforma
and on, syst | s, MTBF
standby
nce rates
corrective
ems with | | References | determination of spare kits. St
1. West Churchman, "The Sy
2. Chadwick, "A Systems Vie
3. Van Gigch, "General Applia
4. Chander, Graham, William
5. Russell Ackoff, "The Art of | stem's Ap
w of Plan
ed System
son, "Pra | proa
n ng".
ns Th
ctical | ch".
eory".
Syster | ns Ana | lysis". | | | | | | AERS427 | Strategic Planning and
Management
Pre-requisites: GENS110, MT | 3 | 2 | 2 | = | | | | | 4 | | Sı | Strategy formation within restructure models of particular large scale organizational chauch as employee developm security, communications, edetermination of compensations. | egulated
relevance
ange. Spenent and
employee | e to t
ecific
traini
and | he avi
techni
ng, jol
labor | ation in
ques u
analy
relation | ndustry
used in
ysis, p
ons, s | y, the property, the property of | rocesso
ging hance a | es for r
uman r
ppraisa | managing
esources
I, safety | | References | David, Fred R_David, Forest
Concepts-Pearson (2016 201 | R -Strate | | | | | npetitive | Adva | ntage A | \pproach | | AERS442 | Fundamentals of
Nondestructive Testing | 3 | 2 | 2 | | | | | | 4 | | | Pre-requisites: GENS110, MT Introduction, Cracks and crac Magnetic Particle inspection Detection, Acoustic Emissi Tomography, Microwave Optic | ck propag
, Ultraso
ions Moi | nic T | esting
g, Th | , Radi
nermal | ograpi
Insp | hic Insp
ection, | ection
Indus | , Eddy
trial C | Current | | | | Credit | | | | Cont | act Ho | urs | | | |------------|--|--|--|---|---|--|---|--
--|---| | Code | Name/Content | Hours | Lec | Tut
(2) | App.
Tut | Lab | Stud | Off.
Tut | Off.
Hrs | Total | | AERS445 | Aircraft Engine Systems | 3 | 2 | 2 | | | | | | 4 | | | Pre-requisites: AERS325, 85 | Credits | | | | | | | | | | | ubrication system: subsyst components, electronic engine Aircraft fuel system: storage, cooling and pressurization, signition system: starting met Control and instrumentation streversal system: construct extinguishing, instrumentation operation and precautions, a | ne control Anti-Icing services b hods, star ystem: co ion, ope n, control bnormal of | l, fue
g sub
leed,
ring o
ntrol s
ration
Pov | el type:
system
perfor
compor
system
n, mai
wer pla | s-chara
ns, refu
mance
nents,
, comp
terials.
ant ins | ecteris
deling-
impre
ignitio
onent
Eng | tics, Bid
defueling
overneng
n comp
s, senso
ine fire
on: nac | Biofuels and
leling-transfer.
nents bleed. Somponents and
ensors, instrume
fire system:
nacelles, mour | and Fafer. Aid of the control | uel cells
r system
rting and
operation
ts. Thrus
detection
s, norma | | | operation, control. Air Pollution | | | | | | | | | | | References | ICAO Training Manual Part D ECARS 147 |)-1 | | | | A | | | | | | AERS417 | Project Planing, Queueing
Systems and Simulation
Pre-requisites: GENS110, 95 | 3 | 2 | 2 | | -£'' | | | | 4 | | Poforoncos | Construction of arrow network scheduling. Reduction of project multi-server systems. Reduction of simulation modes systems (e.g. airports). Designation of Sanjay K. Bose, "An Introduction | ect time a
tion of cu
ls. Simula
gn improv | t min
istom
ation
vemer | imum of
er wait
of serie | cost. C
ting tin
es syst
mplex | ueuei
ne. Si
ems (
syster | ng syste
mulation
e.g. wo
ms . | ofuels and Fundaments bleed. Start conents and of complex construction, and time. Actions. Single sent of complex presents and construction, and construction, and construction, and construction, and complex presents. | erver and
systems | | | AERS338 | Engineering Standards and Specifications | | -1 | 2 | eri
Beri | ng | Pro | ess | sion | 3 | | | Pre-requisites: 95 Credits | | | | | | | | | |