466

IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 15, NO. 4, AUGUST 1996

Classification Algorithms for Quantitative Tissue
Characterization of Diffuse Liver Disease
from Ultrasound Images

Yasser M. Kadah, Aly A. Farag,* Member, IEEE, Jacek M. Zurada, Fellow, IEEE,
Ahmed M. Badawi, and Abou-Bakr M. Youssef

Abstract—Visual criteria for diagnosing diffused liver diseases
from ultrasound images can be assisted by computerized tissue
classification. Feature extraction algorithms are proposed in this
paper to extract the tissue characterization parameters from liver
images. The resulting parameter set is further processed to obtain
the minimum number of parameters which represent the most
discriminating pattern space for classification. This preprocessing
step has been applied to over 120 distinct pathology-investigated
cases to obtain the learning data for classification. The extracted
features are divided into independent training and test sets, and
are used to develop and compare both statistical and neural
classifiers. The optimal criteria for these classifiers are set to
have minimum classification error, ease of implementation and
learning, and the flexibility for future modifications. Various
algorithms of classification based on statistical and neural net-
work methods are presented and tested. We show that very good
diagnostic rates can be obtained using unconventional classifiers
trained on actual patient data.

I. INTRODUCTION

HE use of ultrasonography as an imaging modality has

become widely spread because of its ability to visualize
main organs with no deleterious effects. The basic idea of
ultrasonic imaging is to send a fine beam of ultrasonic waves
through the human tissues and then receive the characteristic
echo reflections from the internal body structures to form
the ultrasound image. The different gray levels of this image
represent the acoustic properties of the human tissues such as
attenuation of acoustic waves, speed of sound, and acoustic
impedance of the different body structures. All these factors
contribute to the shape and intensity of the returned waves
according to the underlying tissue properties and hence, this
fact is the basis for the use of ultrasonography as an imaging
technique. The main limitation for ultrasound is its inherent
inability to visualize air-containing or bony structures. This
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limitation does not apply for most of the abdominal body
structures as they are composed of soft tissues and blood
vessels [1].

Liver diseases are taken seriously because of the liver’s vital
importance to the life of the patient. Liver pathologies can be
classified into two main categories according to the degree of
dispersion of the disease. The first category is the localized
liver diseases in which the pathology is concentrated in small
spot(s) in one or both of the liver lobes while the rest of the
liver tissue remains normal. The second category is the diffused
liver diseases in which at least one complete lobe of the liver
is affected by the disease or, in other words, the disease is
distributed over the whole liver volume. This classification
does not imply that the second category is a later stage of
the first or that it is more serious. Both categories encounter
benign and malignant types of diseases and should be treated
in totally different ways from each other [1], [2], [5].

Visual criteria for diagnosing diffused liver diseases are
in general confusing and highly subjective. They depend on
the ability of the sonographer to observe certain textural
characteristics from the image and to compare them with those
developed for different pathologies in order to determine the
type of the disease. Examples for these features are fexture
homogeneity and texture echogenicity where their description
can be widely debated among experienced sonographers espe-
cially in marginal cases. Moreover, some diseases are highly
similar in their diagnostic criteria, which tend to confuse
the sonographers even more. Diagnostic accuracy using only
visual interpretation is currently estimated to be around 72%
[15]-[17]. Examples of these cases are illustrated in Figs. 1-3.
Visual examination of these images does not produce conclu-
sive diagnosis. Therefore, physicians may resort to invasive
methods such as the pathology investigation of ultrasonically
guided needle biopsies. Although this technique is considered
to be the golden test for diagnosis in terms of accuracy, it has
the disadvantage of being invasive and more importantly, it
poses a risk of cancer spreading if it cuts through a localized
cancer area [2], [8].

To solve some of these problems in diagnosis, researchers
have developed more quantitative criteria using computer-
based systems (e.g., [2], [3], [13], [14], [28]-[35]). Good
results have been reported for the thyroid [31], breast [13], and
liver [2], [32], [35]. Garra et al. [34] compared the performance
of computer-based tissue characterization systems to that of
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Fig. 1. Liver B-Scan ultrasound images for a normal case showing a
homogeneous texture of a liver lobe and a part of the right kidney. The
high echoes in the first part of the image are due to reverberation.

Fig. 2. Ultrasound scans for a cirrhotic case. It is difficult to distinguish this
case from normal.

human observer on several types of diffuse liver disease. The
results suggested that the use of quantitative tissue characteri-
zation could significantly increase the usefulness of ultrasound
for the evaluation of diffuse liver disease. These results
clearly show that the new approach, which can be denoted
as quantitative tissue characterization technique (QTCT), is
gaining more acceptance and appreciation from the ultrasound
diagnosis community. It has the potential to significantly assist
sonographers to achieve better diagnostic rates.

Generally speaking, QTCT is based on extracting param-
eters from the returned ultrasound echoes for the purpose
of identifying the type of tissue present in the ultrasound
scan plane. These parameters can be divided into two main
categories according to their origin.

RF Signal Extracted from the returned RF echoes

prior to machine processing (e.g., attenu-

Fig. 3. Ultrasound scans for a fatty case with different machine settings.
Different settings produce different image statistics, therefore this image can
not be compared to the images in Figs. 1 and 2 using the developed technique.

ation [4], [36] and backscattering param-
eters [37]).

Extracted from the video image after the
echo processing is performed in the ma-
chine. Such parameters include the sta-
tistical characteristics of the gray level
distribution in a certain region of interest
(ROD) in the image. For example, param-
eters obtained from the image histogram,
image gradient, co-occurrence matrices,
and run-length matrix [3].

The first type has the advantage of being free from any
machine processing distortions, while the second has the
advantage of being easier to implement. Using the above pa-
rameters, QTCT attempts to sirnulate the process of diagnosis
inside the human brain by using a numerical classifier. For the
case of textural parameters, there is an explicit correspondence
between the values of the parameters and the visual appearance
of the ultrasound image. For example, the values of the gray
level histogram parameters depend mainly on the intensity of
the ROI, while the values of the gray level co-occurrence
matrix parameters depend on the contrast/homogeneity of
the image. These parameters will be formally defined in
Section III-A.

In a classical statistical classification problem, a measure-
ment vector is assigned to the most probable class among
those used in the classifier design. A class is a collection of
elements having similar properties. For example, in diffuse
liver disease the possible classes can be normal, fatty, and
cirrhotic. However, subclasses inside each of these classes may
also be defined to correspond to different stages of the disease.
A symbolic representation of this problem is shown in Fig. 4,
where each cluster represents the volume in the decision space
assigned to a particular class. In general, these clusters may
overlap and create regions of classification uncertainty. As a
result, the efficiency of the process of classification, and hence
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Pathology #1

Pathology #3

Fig. 4. Illustration of the idea of diagnosis in the parameter space. Each
cluster corresponds to a particular pathological condition and the new case is
required to be optimally classified as a member of one of these clusters.

that of QTCT, depends mainly on minimizing errors due to
these overlaps. This can be achieved by optimizing the process
of parameter selection and the choice of the classifier.

Several classification methods have been used for QTCT
(e.g., linear discriminant and multivariate analysis [37] and
clustering analysis [2]). Nevertheless, attempts to improve
QTCT have been focused mainly on selection of the param-
eters for the classifiers, while the issue of optimal classifier
selection has been largely ignored in the ultrasound literature.
In [20] and [21], we investigated several efficient statistical-
and neural-based techniques for noninvasive diffuse liver
disease tissue classification. In this paper, we present a detailed
description of the algorithms and the results of applying
these techniques on actual patient data. Our main goal is to
investigate the use of well-known quantitative classification
techniques in QTCT, and evaluate their relative performance in
liver tissue characterization. The paper also introduces a novel
classification algorithm based on the functional link neural
networks concept.

II. DATA ACQUISITION

The ultrasound images used in this research were obtained
by a Kretz-320 mechanical sector scanner ultrasound machine.
A Matrox PIP-512 frame grabber card on an IBM-PC was used
to capture 512 x 512 image frames with gray level resolution
of 8 b/pixel. Images were stored in a special frame buffer
that can be manipulated by the programmer through a special
interface library. A number of software tools were developed
on this system to allow the sonographer to define the ROI
in the image for further analysis. A block diagram of the
system with the interconnections between its different parts
is provided in Fig. 5.

To obtain reproducible results, a preparatory calibration pro-
cedure was conducted before the data collection phase. During
this procedure, images of excised fresh animal liver were
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scanned. The procedure of choosing the ROI and parameter
calculation was performed under different imaging conditions
such as scanning frequency, machine settings (TGC, gain,
contrast, and zooming), in addition to varying the size and
location of the ROIL. The results of this study, in addition
to research works in [35], [38], showed that the following
scanning conditions must be standardized for all scans to
ensure the fidelity of the tissue characterization procedures:

1) Ultrasound machine settings (e.g., TGC, FOCUS, and
ZOOM controls) which change the overall image gain
and produce uncontrollable effects. It is important that
the same settings are used for all tissues used in an
experiment, to avoid deviations in the image statistics.
Also, the transducer type should be the same for all
cases to avoid any bias between different interpolation
schemes used for different scan protocols. Moreover,
the frequency of ultrasound waves used must be the
same since the attenuation of ultrasonic waves depends
mainly on this frequency (see Fig. 3). In our case, the
transducer used for all cases was a 4-MHz mechanical
sector scanner.

2) ROI size and shape. To obtain reliable statistics, the
number of pixels in the ROI must be at least 800 pixels
to provide the suitable sample size condition for reliable
statistics. Also, a square shape of the region should be
maintained during all procedures. This corresponds to a
region that is approximately 1 cm x 1 cm with a scan
resolution of 30 pixels/cm leading to the given number.
The actual regions taken were 2 c¢cm x 2 cm, which
lead to a region of interest of 3600 pixels that is far
beyond this minimum. These results were obtained from
a calibration procedure discussed in [15], [18], and [19],
and also agree with the known results in the statistical
pattern recognition literature (e.g., {24]).

3) ROl location. To avoid the distorting effects in ultrasonic
wave patterns, such as side lobes and grating lobes, the
selected region should be selected each time along the
center line of the image. Also, the depth of the ROI
should be chosen such that the distorting effects of the
reverberations in the shallow parts and the attenuation
in the deep parts are avoided.

Fasting condition of the patient. It has been suggested

that patients should be fasting for eight hours before

any scan to avoid the effects of changing the liver
glycogen and water storage on ultrasound attenuation

[36]. This particular issue may not be too critical due to

the sound differences between patients having the same

pathological condition.

4)

The effect of the abdominal wall thickness and composition
was not considered here due to its extreme difficulty to assess
and control (e.g., [39]).

Data acquisition for this research was obtained from ul-
trasound images in a transverse subcostal section taken for
patients just preceding a needle biopsy procedure on their
livers. The data from the pathology laboratory were used
to identify the exact condition of all obtained images. This
procedure was performed for over 120 distinct cases. The
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Video output

Fig. 5. Block diagram of the developed QTCT system.

disease prevalence of the three liver conditions (normal, fatty,
and cirrhotic) were found to be practically similar.

During the course of data collection, a large set of statistical
parameters were calculated from selected regions in each im-
age having the standardized properties mentioned above. This
parameter set was further processed using correlation mea-
surements [19] to discard the dependent parameters to identify
those which most strongly correlate to different pathologies.
In our study, the final parameter set includes eight parameters:
two from the image histogram (mean gray level and first-
percentile), four from the gray level co-occurrence matrix
(contrast, entropy, correlation, and angular second moment),
in addition to attenuation estimate [4], [5] and scatterer sepa-
ration distance [7]. Specific definitions of these parameters are
given in Section III-A. The data set of the above parameters,
collected from the 120 images corresponding to 120 patients
of known pathology, was divided into two sets of equal size;
training set and test set. The training set is used to derive the
classifier parameters, while the test set is used to obtain the
success rate of the classifier. This procedure is very important
to provide bias-free statistical results. Finally, all data samples
were labeled by one of three pathologies: normal, cirrhotic,
or fatty liver diseases; thus, three clusters in a quantitative
classification space were formed.

III. DATA ANALYSIS METHODS

A. Parameter Definitions

1) First-Order Gray Level Parameters: In this category,
the parameters are derived from the gray level histogram.
They describe the first-order gray level distribution without
considering spatial interdependence. As a result, they can only
describe the echogenicity of texture and the diffuse variation
characteristics within the ROIL The two selected parameters
from this category are the following.

a) The mean gray level (gave)

1 .
Jave = N Z 9(27 .7) (D
(4, j)EROI
where g(4, j) is the gray level at pixel (7, j), and N
is the total number of pixels inside the ROI (i.e., N is

equal to the cardinality of the ROI).

b) The first percentile of the gray level distribution (P;)
Pi—1
1
Z h,j < =
= 10

Py

<>k (€

=0

where h; is the value of the gray level histogram at gray
level j. In other words, the first percentile represents the
gray level at or below which lies 10% of the total number
of pixels inside the ROL
2) Second-Order Gray Level Parameters: As one might
guess from the definition of first-order parameters, this
category of parameters describes the gray level spatial
inter-relationships and hence, represent efficient measures
of the gray level texture homogeneity. These parameters
can be derived using several approaches such as first-order
gradient distribution, gray level co-occurrence matrix, edge
co-occurrence matrix, or run-length matrix. The parameters
used in this work from this category are the gray level co-
occurrence matrix parameters. The formal definition of this
matrix is as follows:

Co(i, j) = % cardinality {[(k, [), (m, n)] € ROL
|k —m| =dz, [l —n|=dy,
sign[(k — 1) - (I — n)] = sign (dz - dy),
g(k, 1) =i, g(m, n) = j} ©)
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where Co(t, j) is the gray level co-occurrence matrix entry at
gray levels ¢ and j, g(, j) is the gray level of the pixel (4, 7)
in the ROI, N is the total number of pixels inside the ROI, and
(dx, dy) is a prescribed neighborhood definition, taken in our
case to be (0, 4), representing an axial neighborhood definition.
In other words, the entry (7, j) of this matrix describes how
often the two gray levels 7 and 5 are neighbors under the given
neighborhood definition. Note that this definition does not
discriminate between negative and positive shifts and hence,
the co-occurrence matrix is expected to be symmetric using
this definition. Four parameters were derived from this matrix
and are defined as follows:

a) Contrast (CON)

CON= Y (i—j)* Coli, j). “4)
i,j€G
b) Angular second moment (ASM)
ASM = > [Col(i, j)]”. (5)
i, jeq
¢) Entropy (ENT)
ENT=— )" Co(i, j) -log[Co(i, j)].  (6)
i, j€EG
d) Correlation (COR)
> ijColi, §) — ma - my
_4,4€G
COR = S, -5, 7
where
me =1y Coli, ) (82)
% 7
My = Z g Z Co(t, j) (8b)
J i
5% = Z i? Z Co(i, ) —m2 (8¢)
i J
(8d)

52 = ij Z Co(i, j) —m?
7 7

and G is the set of available gray level values from the
video digitizer.
3) Attenuation and Backscattering Parameters: We as-
sume a simple exponential model for the backscattering echo
amplitude E(x)

e ofa)-exp [-2 [ atryar]

where o(z) represents the scattering coefficient, z is the
distance to the transducer, « is the attenuation coefficient, and
F, is a constant proportionality factor. The factor of two in
the exponent arises from the round trip to the reflector and
back to the transducer. By sampling both sides of this formula

E(x) = ©)

i ]
DD o
k=1 I=1
(k,1)ER;

(10)

E
E;j=="0; exp |-2
Tij
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where F;; is the amplitude of the echo received from pixel
(i. §), 0i; is the backscattering coefficient, «;; is the attenua-
tion coefficient, and R; is the set of image coordinates along
the ultrasound ray of interest. It is obvious that the summation
in the exponent is performed along an ultrasound ray. From
B-scan images, we can obtain values for the left side of the
above formula for any given value of z;; and the goal is to
find ;. Several estimation procedures can be used to obtain
the attenuation coefficients from the B-mode data. Examples
of such techniques are as follows.

a) Maximum likelihood (ML) approach where the distri-
bution of the echo amplitudes is assumed to follow a
Rayleigh distribution [7]. Recent reports have shown
that in order to develop a description of the speckle
pattern, a constant level of spatially distributed specular
scattering should be considered; the latter obeying a
Rician probability density function [8].

Least squares approach after taking the log of both sides

of the sampled formula.

¢) Extended Prony method which consists of fitting expo-
nentials corresponding to the original data [9], [10]. This
method provided the smallest error which was estimated
to be around 5% for a region of 2 x 2cm?. We used this
method to derive the attenuation coefficient in this study.

b)

4) Backscattering Coefficient: The elastic and collagen
fibers exhibit an elasticity constant that is greater than
that of other tissues [11]. Because of the differences in
elasticity at collagenous interfaces, this will lead to increasing
the scattered intensity at these sites. Hence, measuring the
backscattering coefficient can provide valuable information
about the structure of soft tissues since the increase of
stromal density (collagen) within a tissue will increase the
backscattering coefficient accordingly. The basic expression
for backscattering is given by [12]

LVEK3y?

1(180° = 7

d
/ N{(r)R sin (2K,r) dr (1
0

where I, is the incident intensity, K, is the incident wave
vector, -, is the rms deviation of the compressibility of
inhomogeneities from the mean value expressed as a fraction
of that mean value, N(r) is the correlation function of the
scatterer (characteristic separation in scattering structures), V'
is the scattering volume, and R, is the distance from the
scattering volume. For a Gaussian characteristic separation

N(r) = exp C;)

where @ is the average scatterer separation. Assuming a
periodicity about the dimension d or zero scattering outside
the volume of dimension d, the limits of integration can be
changed to infinity instead of d, we obtain

12)

R

#a(180°) = 1(180°) —-2

2 743
_ i Ka

== (13)

exp (—K2a%).
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For an exponential characteristic separation, we have

N(r) = exp (-g)

Using the same periodicity assumption as before, we get
1q(180°)

(14)

Ko
(1 +4K2g%)2"

1a(180°) = (15)

We used the above formula to obtain the backscattering
coefficient.

B. Statistical Classifiers

Statistical classification can be divided into parametric and
nonparametric techniques. Parametric statistical pattern recog-
nition uses given or assumed information about the prior
probabilities to obtain the classification. For example, in the
Bayes minimum-error classifier, one can assume a Gaussian
a priori conditional probability densities for the classifica-
tion process, and estimate the parameters of the Gaussian
probability density function (i.e., the mean, covariance, and
correlation coefficient) from the given samples. On the other
hand, the nonparametric approach does not require any a priori
information about the probability distributions of the data in
each class; classification is performed based on the provided
data samples with known class memberships. For example, in
the voting k-nearest neighbor technique, classification is made
using the labeled design set only [24]. Hence, this approach is
less subjected to the bias effects due to incorrect assumptions
or parameter changes than the former [23].

An important initial step in both techniques is to divide the
data set into two independent subsets, design and test sets. This
preliminary step effectively avoids introducing false-negative
bias effects to the error estimates. It can be shown that the error
obtained by classifying an independent set of known classes
is unbiased and consistent estimate for the actual error value.
Also, the effect of normalization of all parameter values within
a fixed range around the zero (e.g., between 4:1) is studied as
a possible convenient preprocessing step for proper weighing
of parameters in distance-dependent measurements [23].

Before we describe the classifiers that were implemented
in this study, we will define a set of parameters that will be
referred to frequently with reference to statistical and neural
classifiers.

False-negative rate The probability that the classification
result indicates a normal liver while the
true diagnosis is indeed a liver disease
(i.e., positive). This case should be
completely avoided since it represents
a danger to the patient.

The probability that the classification
result indicates a liver disease while
the true diagnosis is indeed a normal
liver (i.e., negative). This case can be
tolerated, but should be as infrequent
as possible.

False-positive rate

Sensitivity The conditional probability of detect-
ing a disease while there is in fact a
liver disease. By definition, Sensitivity
= 1 — false-negative rate.

Specificity The conditional probability of detect-

ing a normal liver while the liver is
indeed normal. By definition, Speci-
ficity = 1 — false-positive rate.

1) Minimum Distance Classifier: This method assumes that
the classes are similar in distribution and are linearly separable.
Hence, the decision lines are allocated half-way between the
centers of clusters of different classes.

Algorithm 1:

Step 1) Group the design set into three supervised clusters
according to their labels, representing the three
pathologies of interest.

Estimate the sample mean for each class by aver-
aging the eight-dimensional (8-D) parameter set of
the class.

A test sample is classified by assigning it to the
class which has the nearest mean vector.

Error rate is estimated by the percentage of mis-
classified samples.

2) Bayes Minimum-Error Classifier: The Bayes decision
rule classifies an observation (test sample) to the class that
has the highest a posteriori probability among the three
classes [23]-[25]. In this study, the data set is assumed to
have a Gaussian conditional density function and the a priori
probabilities are assumed to be equal for the three pathologies.
That is

Step 2)

Step 3)

Step 4)

1
Sx (x|wi) = LG

- exp [——;— (x-M)TS(x - M)| (16)

and

Plw) =%, ie{1,2 3} (17)

X 8 x 1 data sample from the random vector X;

8 x 1 vector representing the sample mean of class ¢;

3; 8 x 8 matrix representing the covariance matrix of
class i;

w;  class 1.

The Bayes decision rule is: Choose class j € {1, 2, 3} if
Jx(x|w;)P(w;) = max {fx (x|wi) P(w;)[i =1, 2, 3}. (18)

Since the covariance matrices are expected to be different
for each class, (18) is, in general, quadratic. This equation
can be evaluated numerically. However, a simpler approach is
obtained through the approximation of the covariance matrices
by their corresponding Toeplitz forms (e.g., [24]). Assume that
each covariance matrix can be put in the form



472

T;1 0 0
R 20)
0
L0 - 0 oin
M1 Pi ot
R, =| 7 ! @1
N‘71 Pi
Lp; i 1

where o, is the standard deviation of the kth parameter in
class ¢ and p; is a fixed parameter for each class.

Notice that I'; is a diagonal matrix and R,; is Toeplitz.
The parameter ;. is the standard deviation of the random
variable X € X, k € [1, NJ; it is equal to the square root of
the diagonal elements of the matrix X;. The parameter p; is
estimated by averaging those elements in the autocorrelation
matrix R; = {Ry, n, 1 <m,n <N} for which |m—n| =
1. It is straight forward to show that

N
Ril=(1- )" ' =[S = (1- )V L ]] 0% @2

k=1
1 —pPi 0 0
R R R I
RS :1%p2 0 . . . 0 (23)
N : L+pf —pi
0 - 0 —p 1
1
— 0
g41
ril=|0 - 5 24)
0 - 0 !
OiN
and
»ol=rriRIT (25)

The above approximation makes it simpler to evaluate 3. '
The Bayes minimum error classifier in (18) is implemented
as follows.

Algorithm 2:

Step 1) Estimate the Gaussian distribution parameters (i.e.,
8-D mean vectors and covariance matrices, N = 8
for our data) from the samples of each class.

Use the Toeplitz approximation in (19)—(25).
Substitute into the multidimensional Gaussian for-
mulas for the three classes and multiply each of
the obtained values by the a priori probability of
its class.

Classify a test sample by assigning it to the class
having the highest a posteriori probability among
the three classes.

Estimate the error rate by comparing the classifica-
tion results to the actual class membership.

Step 2)
Step 3)

Step 4)

Step 5)
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3) Voting k-Nearest Neighbor (k-NN) Classifier: This tech-
nique is nonparametric, it assigns a test sample to the class of
the majority of its k-neighbors [24]; that is, assuming that the
number of voting neighbors is k£ = k1 +ko+ks (where k; is the
number of samples from class ¢ in the k-sample neighborhood
of the test sample), the test sample is assigned to class m if
km = max {k;, i = 1, 2, 3}. The algorithm used is as follows.

Algorithm 3:

Step 1) Obtain and store the distances between the test
sample and all the samples in the design set.

Sort the obtained distance values in ascending
order.

Consider the subset of the first & distances in the
sorted array; i.e., the k-NN. Knowing the class
membership of each of these samples, assign the
test sample to the majority class in this subset if
it exists, otherwise the result is considered incon-
clusive.

Estimate the error rate by comparing the classifica-
tion results with actual class membership. Treat the
special case of inconclusive decisions individually
as a separate entity (i.e., neither an error nor a
correct decision) and obtain its rate of occurrence.

Step 2)

Step 3)

Step 4)

C) Neural Network Classifiers

In designing neural network classifiers emphasis has been
on the comparison between different architectures. Learning
parameters are fixed for different architectures used in this
paper to neutralize their effect on the results. A bipolar neural
activation function is taken to be in the form

2

flnet) = 1 —exp[—Anet] !

(26)
where net is the sum of all inputs to the neuron multiplied
by their weights and A is the activation constant which is
set to be one in all architectures. As a first preprocessing
step, the training set is normalized between +1 for all of
the parameter values. This can be performed in the same
way as described in the previous section. This effectively
helps speeding up the training by moving our operating point
to the portion of the neuron activation function which has
the highest slope. Also, a bias weight is added to each
case expanding the size of the input space by one. This
is important in order to provide the perceptrons with the
ability to produce classification hyperplanes not necessarily
passing through the origin, and to enhance the efficiency
of the training algorithm. Also, each of the pathologies is
assigned a binary representation with the possibility to take
only two values: present/absent which are mutually exclusive.
Several architectures were investigated in this research and
are summarized below.

1) Single-Layer Perceptrons: In this method, a single per-
ceptron is assigned for each pathology. This particular percep-
tron produces an output of one for present and —1 for absent.
The algorithm used to train this class is based on delta learning
rule which can be summarized as follows.
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Algorithm 4:

Step 1) Arrange the training data set in the form of three
separate data subsets. For each data sample, the
data subset i should contain the eight parameter
values augmented by an additional constant value,
taken to be +1, as the input vector x;, and corre-
sponding to one of the pathologies desired output
d;. The pairs x; and d; will be used to train
the single perceptrons independently. Small initial
values for the weight vectors W;’s are assumed
for the three-perceptron layer (usually taken as
random values of uniform distribution in order of
magnitude of less than the inverse of the fan-in of
the connected neuron).

Apply the samples of the training sets to the inputs
of the layer. Calculate their corresponding outputs
f(net;).

Obtain the diagnosis produced by the layer by
either using a high-gain output stage to binarize the
activation values into 1, and choose the diagnosis
corresponding to the neuron of output = 1, or
by selecting the maximum activation to be the
diagnosed pathology. Compare to the desired value
and determine whether the diagnosis is correct or
not for this case.

Calculate the updated weight vectors for each neu-
ron as

Step 2)

Step 3)

Step 4)

c

[di — f(net:)][1 — f2(nets)]x:  (27)

where (' is a learning constant fixed as 0.1.
Perform Steps 2) and 3) for all training pairs in
the data sets. Evaluate the diagnosis rate for the
whole data set. If all responses are correct then
stop, otherwise continue network training.

Stop the training and declare an overrun condition
if the number of training cycles exceeds a certain
limit chosen here to be 10000. In this case, the net-
work is considered to be incapable of separating the
data classes, and the weight values corresponding
to the best diagnostic rate during the training are
selected.

Test the network after training by classifying the
samples from the test set and obtain the error rate
for the network by the percentage of the number
of misclassified samples to the total number of test
samples.

2) Multilayer Perceptron Architectures: Multilayer percep-
tron network consists of a first (hidden) layer of perceptrons
feeding a second (output) layer of size equal to the number of
pathologies. An illustration of this type of networks is shown
in Fig. 6. Various hidden layer sizes are used and the outputs
are produced by binary or maximum response decision criteria
to decide one of the three pathologies. The algorithm used to
train this classifier is the multilayer error back-propagation
algorithm which can be summarized as follows [22].

Step 5)

Step 6)

Step 7)

Normal
Fatty
Cirrhotic
Output
Liver Image Hidden (disease)
Parameters Layer
Fig. 6. Multilayer neural network structure. It has an intermediate (“hidden”)

layer of neurons to enhance its correct classification capabilities.

Single Layer
- of Neurons
I
Original | 'v
Pattern | & Output #1
e
. ©
i
L
Output #2
! 0
Higher |
Order N o]
Input !
Terms | ©
- Output #K
1
(a)
Fig. 7. Functional link network with single layer of neurons with expanded

inputs including the cross product terms of the original parameters. (a) General
structure.

Algorithm 5:

Step 1) Initialize the weight vectors of the two layers of
the network as in Step 1), Algorithm 4.

Introduce the training samples to the inputs of
the network and calculate the outputs of the first
layer. Then, these outputs after augmentation by a
constant value are the inputs to the second layer.
Hence, the outputs of the second layer can also be
calculated.

The weight vectors update for the second layer
neurons will follow exactly the Steps 3)-5) of
Algorithm 4 replacing the input vector x by the
vector of outputs of the first layer. On the other
hand, the weight update for the first layer can be
expressed as follows: define the output layer error

Step 2)

Step 3)
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Original
Inputs

x1
x2
x3

xN

Fig. 7.
(b) Network implemented in this paper.

signal

e® = §{d; — flnetP} {1 = et} @8)
where netgj ) is the net value at the input of the 7th
neuron in the jth layer, hence calculate the hidden
layer error signal ES) as the sum of all output layer
error signals multiplied by the connecting weight
from the kth neuron in the hidden layer to all
neurons in the output layer. Then update the weight
for the 7th neuron in the first layer as
AW®D = € 2O
=5 {1 - filnet;”’}e;’x (29)
where C' is a learning constant fixed as 0.1. A
momentum term may be added to the weight up-
date which is equal to the previous weight update
multiplied by a positive constant factor <1, chosen
here as 0.5.
Determine the condition to stop and test the net-
work exactly as in Algorithm 4.

3) Functional Link Network: The functional link networks
constitute a generalization of the usual neural networks in that
the neurons actual inputs are not linear combinations of the
given inputs, which in our case are the tissue parameters. For
example, if the given parameters are A, B, and C, then the
inputs for a regular network neurons may only include terms
of the form a1 A+ oo B + a;3C, where «;; are constants. On
the other hand, the functional link network inputs may include
quadratic terms (e.g., A?) or even trigonometric functions [e.g.,
sin (B)] of those parameters.

Several approaches have been tried to generate those higher
order terms (e.g., [26]). These approaches can be in general
classified into two main categories. The first one is to simulate
the biological neural computing characteristics, where the real
inputs from the dendrites cannot be physically separated while
acting on a single neuron and a cross product terms naturally
arise; the second, to use simple forms for the expansion terms
to gain mathematical tractability. The basic mathematical
theory in either case indicates that the functional-expansion
model should converge to a flat-net solution if a large enough
number of additional independent terms are used. Examples
of such functions include tensor (outer-product) model and
pure harmonic functions [27]. The superior performance of

Step 4)
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Functional-Link
Expanded Inputs

yl
y2
y3

yM

(®)

TABLE 1

Output

(Continued). Functional link network with single layer of neurons with expanded inputs including the cross product terms of the original parameters.

MINIMUM DISTANCE CLASSIFIER

Pathology Before Normalization | After Normalization
Specificity 29.4% 23.5%
Sensitivity for Cirrhotic 23.5% 0%
Sensitivity for Fatty 41.2% 76.5%
TABLE II
BAYES QUADRATIC CLASSIFIER
Pathology Before Normalization | After Normalization
Specificity 86.5% 56.8%
Sensitivity for Cirrhotic 16.2% 0%
Sensitivity for Fatty 70.3% 91.9%

functional link networks can be demonstrated in the two-
dimensional (2-D) case by the implementation of a two-input
logical XOR function using binary neurons, where a single
cross-term is able to realize the function which is otherwise
impossible using the standard inputs. For the general case of
n-dimensional input space, we can imagine that the functional
expansion creates more flexible classification surfaces than the
set of intersecting hyperplanes created by the linear inputs.

In our case, the two approaches of generating higher-order
terms converge to the same path since we are using the tensor
(outer product) model. This includes second- or third-order
cross-terms to expand the input space. This model can be
formally defined as follows.

a) Tensor Model A (second-order model)

{z;, i=1,2, ..., 8} ModelA,
{-rixjv Zvj = 17 27 T 87 Z;éj} (30)

b) Tensor Model B (third-order model)

(e, i=1,2, .., 8} MedelB,
(wiwjay, 4,4, k=1,2,--,8, i#j#k} G

So, for our case, the number of added terms will be 28,
which is calculated from the number of possible distinct pairs
drawn from the available eight different parameters. In general,
for the case of N distinct parameters, the number of added
terms in the tensor model A will be N(N — 1)/2. Similarly
for the tensor model B, the number of added terms will be
N(N-1)(N—-2)/3 x 2. Hence, for our case, the tensor model
B will add 56 higher-order terms, and the combined model
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TABLE III
VOTING k-NN CLASSIFIER
X Before Normalization After Normalization
Specificity ] Sens.Cirrhotic ] Sens.Fatty | Specificity l Sens.Cirrhotic l Sens.Fatty
1 94.1% 100% 94.1% 88.2% 100% 100%
2 100% 100% 93.3% 88.9% 100% 100%
3 81.3% 82.4% 94.1% 62.5% 94.1% 93.8%
4 84.6% 100% 94.1% 63.6% 93.3% 93.8%
5 82.4% 94.1% 94.1% 53.3% 87.5% 93.8%
6 75.0% 92.3% 94.1% 53.8% 100% 93.8%
7 80.0% 88.2% 100% 53.3% 87.5% 88.2%
8 78.6% 88.2% 94.1% 53.8% 86.7% 88.2%
9 81.8% 88.2% 94.1% 60.0% 93.3% 88.2%
VOTING k-NN CLASSIFEQI?L‘EOIEZLUSWE DECISION RATES 1 I ' ' HOLTIAYER BACK ZE%AG”'C’N MLEP —
oer FUNCTIONAL LINK NETWORK WITH mtgs ﬁk‘lD %MEN¥UM $E§m
X Before Normalization After Normalization os | J
Normal | Cirrhotic I Fatty | Normal l Cirrhotic Fatty
1 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
2 | 47.0% 29.4% 11.8% | 47.0% 5.9% 11.8% 8
3 5.9% 0.0% 0.0% 5.9% 0.0% 5.9% &
4 1 23.5% 17.6% 0.0% 35.3% 11.8% 5.9% g
5 0.0% 0.0% 0.0% 11.8% 5.9% 5.9%
6 | 294% 23.5% 0.0% 23.5% 29.4% 5.9%
7 11.8% 0.0% 5.9% 11.8% 5.9% 0.0%
8 17.7% 0.0% 0.0% 23.5% 11.8% 0.0%
9 | 353% 0.0% 0.0% 11.8% 11.8% 0.0%
0 0 1 OIDO 20.00 30'00 000 . SOUO 70‘00 80'00 90‘00 10000
THA)NING CVCLE
TABLE V Fig. 9. Training profile of multilayer neural network with 20 hidden-layer
SINGLE PERCEPTRON TRAINING neurons. Here, both the momentum term and the functional link inputs seem
to improve the speed of the network training.
Pathology Training Set | Test Set
Specificity 86.7% 88.3%
Sensitivity for Cirrhotic 95.0% 91.7% ' .
Sensitivity for Fatty 100% 96.7% ‘“‘F‘f,ﬂ'é%‘,‘gﬁﬁf.’_‘.ﬁﬁ RE?&‘G‘T'O”AMLB@ f—
O MOMENTUM TERM -

MULTILAYER BACK PROPAGATlON MLBP,
0.9 FUNOTIONAL I INK NE RS OHK WIT MLE i
FUNCTIONAL LINK NETWORK WITH MLBF' AND MOMENTUM TERM

RMS ERROR

4000 000 6000 8000

2000 5
TRAINING CYCLE

o 1000

3000 7000 2000 10000

Fig. 8. Training profile of multilayer neural network with five hidden-layer
neurons. The momentum term has a positive effect to speed up the training
while the functional link inputs seems to have a rather negative effect.

(A) and (B) will add 84 terms. A graphical illustration of the
general idea of functional link inputs is shown in Fig. 7(a).
Also, the architecture of the network used in our application
is shown in Fig. 7(b).

4) Data Compression Using Cluster Center of Gravity: In
this Section, we compress our data set to only one record per
pathology, which is the center of gravity (CG) of the pathology
cluster, in order to obtain easier training. The center of gravity
of a particular cluster is defined as the weighted mean of all

H MLBP AN
095 FUNCTIONAL LINK NETWORK WITH MUBP AND MOMENTUM TERM 1

DIAGNOSIS ERROR

40 50 60
TRAINING CYCLE

Fig. 10. Training profile of multilayer neural network with 20 hidden-layer
neurons. The effect of adding the functional link inputs is shown to improve
the diagnosis error more than adding the momentum term alone.

n-dimensional parameter vectors belonging to the set of all
cases with a particular pathology forming the cluster. It is
important to note that the diagnosis errors obtained are not of
the same weight like we usually have in other situations. As
indicated before, liver diseases are of a serious nature and can
be life threatening. Therefore, the misclassification errors are
categorized into false negative, which means that a patient is
diagnosed as normal while the patient has a disease, and false
positive, which means that a normal patient is diagnosed to
have a disease. Obviously, the first category is most dangerous
and should ultimately be eliminated. Consequently, this can be
an important point for correct interpretation of the results.
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Fig. 11. Training profile of multilayer neural network with 50 hidden-layer

neurons. Diagnosis error improves with increasing the size of the hidden-layer.

TABLE VI
MULTILAYER NETWORK TRAINING—SUCCESS
RaTES UsING 1000 TRAINING CYCLES

Training Algorithm Hidden-Layer Size | Training Set | Test Set
MLBP* 5 73.3% 68.3%
MLBP+Momentum Term 5 75.0% 68.3%
MLBP 20 76.7% 68.3%
MLBP+Momentum Term 20 73.3% 70.0%
* (Multilayer Back Propagation Algorithm)
0.4 . T . T T T T T r
NORMAL ~o—
0.35 CIRRHOTIC -~ ]

DIAGNOSIS ERROR

o] 10 20 30

40 50 80 70 80 20
TRAINING CYCLE

Fig. 12. Training profile of a three-neuron, single layer, functional link
neural network tensor model (A). Diagnosis error reaches zero after 90 training
cycles only for the three pathologies.

IV. RESULTS

A. Statistical Classifiers

1) Minimum Distance Classifier: The results of applying
this classifier are not satisfactory at all. The correct diagnosis
rates for different pathologies are listed in Table I. Obviously,
this classifier is not suitable for this application. This can be
explained by the presence of a high degree of overlapping
among the three pathology data clusters, which simply could
not be resolved using only hyperplanes as assumed by this
classifier.

2) Bayes Quadratic Classifier: The results for this classi-
fier are listed in Table II and are better than that of type A.
However, the rate of correct diagnosis is still not sufficient
for practical use. This could be related to both insufficient
accuracy of estimation due to the low sample volume and to
improper initial assamptions of probability distributions.
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Fig. 13. Training profile of a three-neuron, single layer, functional link
neural network tensor models (A) and (B). Training speed improves for the
cirrhotic and fatty cases but the training for normal cases is slightly degraded.

TABLE VII
FuncTioNaL LINK NETWORK—TENSOR MODEL (A)
Pathology Training Set | Test Set
Specificity 100% 90.0%
Sensitivity for Cirrhotic 100% 96.7%
Sensitivity for Fatty 100% 96.7%
TABLE VIII
FuncTioNaL Link NETWORK—TENSOR MODEL (A) & (B)
Pathology Training Set | Test Set
Specificity 100% 93.3%
Sensitivity for Cirrhotic 100% 98.4%
Sensitivity for Fatty 100% 100%

3) Voting k-NN Classifier: The results of this method are
shown in Table III. As expected, this method yields much
better results than both former methods to classify the three
pathologies. This can be explained by the inherited indepen-
dence of the technique from the data distribution by being
sample-based. The rate of inconclusive decisions, shown in
Table IV, should be carefully considered because it indicates
how often this classifier becomes useless. In other words, the
rate of inconclusive decisions should be as small as possible
for a reliable classifier. Therefore, the best performance is
obviously obtained for £ = 1, sometimes called nearest
neighbor classifier.

B. Neural Network Classifiers

1) Single-Layer Perceptron Network: This architecture show-
ed a relatively poor response. The results obtained are shown
in Table V. It can be seen that the error is 22% with false-
positive rate of half this number, which is quite unacceptable
for good diagnosis. This performance is mainly due to the high
degree of overlapping between the three pathology clusters,
which goes beyond the linear separability provided by the
single-layer perceptrons [22].

2) Multilayer Perceptron Network: This architecture showed
high performance for steady error reduction during training.
However, the network requires much longer training time due
to the large number of input patterns (60 different patterns),
in addition to the large size of weight matrices, especially
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TABLE IX
Success RATE UsING CG’S ONLY TO TRAIN MULTILAYER NEURAL NETWORKS
Training Algorithm Hidden layer | Error for Training Set | Error for Test Set
MLBP 5 100% 61.7%
MLBP+Momentum Term 5 100% 61.7%
MLBP 20 100% 60.0%
MLBP+Momentum Term 20 100% 65.0%

for a large number of hidden-layer neurons. The introduction
of a momentum term into the training has slowed down the
training even more while reducing the error. In addition, the
network training may be diversified even more to improve the
convergence of the algorithm and to avoid local minima. This
can be achieved by using simulated annealing technique to
find the global minimum error. Apart from these problems,
the performance of this type of networks is good for binary
output decision layer and 30% better for maximum-response
decision layer. Figs. 811 illustrate various examples of train-
ing profiles of this category. The results after 1000 training
cycles are shown in Table VI. As can be seen, the introduction
of the momentum term helps to reduce the RMS error more
quickly. However, this architecture is not the best one for the
class of problems because the training has been found to be
rather lengthy.

3) Single-Layer Perceptron Network with Functional Link
Inputs: Using the additional tensor model inputs (A) and (B)
to the normal input space, excellent results are obtained even
with a single layer of perceptrons. The training profile is shown
in Figs. 12 and 13, and the results are listed in Tables VII and
VIII. Results of this classifier are obviously quite good; they
are based on a simple network with only a single layer and with
full ability to add a new pathology independent from the other
existing pathologies. The explanation for superior performance
of this network is that the introduction of new terms enables
the neurons to have nonlinear classification capabilities, which
are originally not present in neural network architectures with
single layer. This is achieved through adding the product terms
z;x; in the net function, which represents hyperbolic decision
lines in all planes parallel to the z;x; plane.

4) Multilayer Perceptron Network with Functional Link
Inputs: Training results of this classifier are illustrated in
Figs. 8-11 in comparison with other classifiers. It is shown that
the introduction of additional terms to a multilayer network
with only few perceptrons in the hidden layer degrades the
performance of the training. On the other hand, these terms
may be of significance for multilayer networks having hidden
layers of large dimension.

5) Validity of Using Cluster Center of Gravity for Training:
The cluster CG’s are obtained for the three pathology clusters
and used as the only training set for the multilayer perceptron
network. The main purpose of this experiment is to try to
find out a method to overcome the slow rate of learning for
this network. The results of the experiment are summarized in
Table IX. Obviously, the zero error for the training set does not
imply that the network can work as well for data around the
training CG’s. Hence, this method did not provide acceptable
results for this task.

V. CONCLUSIONS

The primary conclusion of this research is to confirm
the importance of the choice of classification techniques on
the success rate of QTCT. Some of the sound classification
techniques (e.g., the Bayes minimum error classifier) failed
to provide acceptable results, while others could. This might
also be a significant indication that the design of classifiers
assuming normality of data alone can lead to poor results due
to the complexity and overlapping between different pathology
clusters. Results of this research showed a good promise
for functional link neural networks in automatic diagnosis.
Although the method does not actually expand the input space
(because all additional terms can be proven to be dependent),
it has a powertful capability to create hyperbolic surfaces in
addition to the original straight lines as decision boundaries.
Also, the high performance of the sample-based voting k-NN
is appreciable. We believe that these two statistical and neural
methods offer high degree of efficiency due to their simple
implementation and use as compared to other more complex
techniques. Normalizing the classification data has been shown
to improve the overall diagnostic accuracy, indicating its
importance as a preprocessing step. Further progress can
be achieved in the functional link approach if one tries to
minimize the number of added terms to achieve the required
correct classification. This may be done through elimination
of the elements multiplied by the smallest weights and then
repeating the training procedure again. Also, the effect of
perceptron activation and training parameters may further
be studied to obtain the set of parameters yielding the best
performance for a given architecture. On the other hand, in
the k-NN method, we can resolve the problem of inconclusive
decisions by assigning a certain weight to each of the k
neighbors that is inversely proportional to their distances to
the sample of interest. These weights are used to favor certain
decision in the absence of a majority class. The findings
of this paper may also suggest a much easier hardware
implementation of tissue analysis functions to be provided in
ultrasound machines in the future.
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