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Abstract 

Background: Computerized ultrasonographic tissue characterization has become an objective 
means for diagnosis of liver diseases. It is difficult to differentiate diffuse liver diseases by 
visual inspection from the ultrasound images. Computerized ultrasonographic tissue 
characterization has emerged as one of the most accurate methods in classification of different 
liver pathologies.  
Aim of the work: Is to establish a  specific quantitative criteria for computerized 
discrimination of different diffuse liver diseases detected as bright liver by ultrasound. 
Materials and Methods: Using 10 tissue characterization parameters namely; mean gray 
level, 9

th
 percentile, contrast, entropy, attenuation, correlation, angular second moment, 

average specular intensity, average diffuse intensity and speckle separation distance was able 
to differentiate between different hepatic pathologies among 45 patients with sonographically 
detected bright liver and 12 control subjects. A neural network model is proposed to classify 
different diseases from detecting these quantitative parameters from the ultrasound images. 
Results: We reported a results of classification of bright livers  over 90%  sensitivity, 
specificity, and overall efficiency. 
Conclusion: We concluded that, Computer-assisted sonographic tissue characterization using 
the neural network classifier is a sensitive and specific technique for separating diffuse liver 
disease with ultrasonically detected bright liver from control cases.  
 
 
 
 
 
 
 
 
 



INTRODUCTION 
 

Chronic liver diseases constitute a major health problem in Egypt. Nowadays viral hepatitis 
competes with schistosomiasis as a leading cause of chronic liver diseases in Egypt and 
elsewhere in Middle East (El-Rooby, 1985). Ultrasonraphically detected bright liver is a 
frequent finding commonly met with in patients with fatty liver, chronic hepatitis and 
cirrhosis (Joseph et al., 1979). Ultrasonography is particularly effective in identification of 
cystic lesions as they have no internal echoes and have sharp borders providing high contrast 
with the surrounding tissue, also it is effective in detection of hepatic focal lesions when they 
are more or less echogenic than the surrounding tissue (Gara, 1991). Zwiebel (1995) stated 
that ultrasonic imaging is not an accurate tool for the detection of diffuse liver disease. This 
may be due to subjective nature of sonographic interpretation which is error-prone for three 
reasons: first, disease processes may alter the echogenicity of the standards of comparison, the 
kidney and pancreas; second: interobserver variability is considerable and third: instrument 
setting variables may diminish or accentuate difference in echogenicity. These differences are 
partly responsible for the considerable interest shown in quantitative ultrasonic tissue 
characterization techniques. Tissue characterization is a term that refers to the quantitative 
estimation of tissue or image features leading to a more accurate distinction of normal from 
abnormal tissue. The results of tissue characterization may be quantitatively interpreted using 
numerical values or may be displayed as an image for qualitative interpretation by an 
observer. Tissue characterization aims to provide additional information about tissues not 
readily available by simple viewing of ultrasound B-scan. The information gained from tissue 
characterization is usually quantitative and is far less operator dependent than is the usual in 
B-scan image (Gara, 1991). The Visual criteria provides low diagnostic accuracy (around 
70%) (Youssef et al., 1993). Therefore the physicians may have to use further invasive 
methods such as the pathology investigation of ultrasonically guided needle Biopsy. Although 
this technique is considered to be the golden test for diagnosis, it has the disadvantage of 
being invasive and risky, it may cause a great risk of cancer spread if it cuts through a 
localized cancer area (Youssef et al., 1993, Badawi et al., 1994). The quantitative analysis of 
using ultrasound signals as an aid to the diagnosis of diffuse disease has been described by 
many researchers (Badawi et al., 1996).  So the aim of this study is establish a  specific 
quantitative criteria for computerized discrimination of different diffuse liver diseases 
detected as bright liver by ultrasound.  

 
MATERIALS AND METHODS 

 
Forty-five patients having bright liver on sonographic examination were selected from about 
300 patients suffering from liver diseases and 12 subjects served as control during the period 
from May 1997 to April 2000. All patients were from admission to Tropical Medicine 
Department and liver unit Kasr El Aini Hospital, Cairo University hospitals. They were 11 
males and 34 females, their ages ranged from 27 to 65 years. 
This work included two phases: 
Phase I (Case study): 
Including clinical, laboratory, conventional ultrasonography and pathological   
examination. Clinical examination includes general (Pulse, temperature, blood pressure, body 
measurements, cardiopulmonary, neurological, renal measurements) and local (liver, 
abdominal) examinations. 
Laboratory investigations are : 



1- Blood sugar  2- Complete blood picture  3- Liver function tests  4- Serological tests for 
hepatitis markers 5- Serum lipids 6-Serum auto-antibodies 7-Liver Biopsy 
Phase II (Ultrasonographic tissue characterization) Including: 
    I - Sonographic image analysis. 
      II- Construction of the neural network. 
      III- Testing the efficacy of the network. 
 
I. Sonographic image analysis: 
      a) Data acquisition system. 
      b) System settings. 
      c) Calculation of image parameters. 
a) Data acquisition system: 

The video output of an aTL Ultramark model 9 ultrasound machine was connected to a 
Nova-Microsonics workstation for image acquisition. The images were captured for fully 
inspired subject with controlled movement.  
 

 

 

 

 

 

 

 

Figure 1: Block diagram for the developed system. 

A software was developed on this system to allow the sonographer to define the region of 
interest (ROI) in the image for tissue characterization (WINDOWS operating system). 
 
b) System setting: 

To obtain reproducible results, the following parameters were standardized for all 
tissue characterization procedures from the B-mode image (Badawi, 1996). 
1. Ultrasound machine settings e.g. Timed gain control (TGC), focus and zoom controls 
which can change the overall image gain and produce zooming effects and hence they can 
deviate the image statistics in unpredictable way. Moreover, the frequency of ultrasound 
waves used were the same for all subjects since the attenuation is frequency dependent. 
2. Region of interest; size and shape: Region of interest is the part of the image where 
different analytical procedures are performed. Images were acquired in a transverse subcostal 
scan taken for the patient just preceding a needle liver biopsy. To obtain reliable statistics, the 
number of pixels in the region of interest must be at least a thousand pixels (1cm X 1cm = 30 
X 30 pixels). A practical ROI size was 2cm X 2 cm, i.e.60 X 60 pixels. Also, the square shape 
of the region should be maintained during all procedures. 
3. Region of interest location: to avoid the distorting effects in ultrasonic wave patterns, the 
ROI should be selected each time along the center of the image. Also, it should include pure 
texture i.e. away from major vessels. 
4. Fasting condition of the patient: each study subject should be fasting for at least 8 hours 
before the scan to avoid the effect of changing liver glycogen and water storage on ultrasound 
attenuation. 
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Figure 2:  B-Mode Images for Normal,  Chronic Active Hepatitis (CAH), and Cirrhotic Livers 
 
c) Calculation of image parameters : 

The simplest form of image data analysis is that of the pixel data histogram, which is 
a display of the occurrence frequency of gray levels in a region or along a line in the image.  
The first order texture statistics: that is giving information about gray level frequencies but 
not about spatial location [e.g. mean gray level, 9

th
 percentile]. This form of analysis has been 

implemented on several commercial ultrasonic imagers and usually allows calculation of the 
mean intensity value of the pixels along a given line of interest or from within a region of 
interest. Usually a histogram of the gray level distribution is displayed on the screen. 
Although this form of analysis has been available on many scanners, it has been little used 
since mean pixel gray level is strongly dependent on the gain settings used and no method for 
standardization or calibration of the intensity levels is usually available. 
The second order parameters: the second order statistical features give not only occurrence 
frequencies of gray levels but also spatial interdependencies between the image elements 
(pixels). (e.g. contrast, angular second moment, entropy and correlation). 
Acoustical parameters: e.g. Attenuation. 

  

 



Speckle parameter namely; average specular intensity (Is), average diffuse intensity (Id) and 
speckle separation distance. 
The parameters measured in our work included: mean gray level (MGL), 9

th
 percentile 

(PER9), contrast (CON), entropy (ENT), correlation, angular second moment (ASM), 
attenuation (ATTEN), average specular intensity (IS), average diffuse intensity (ID) and 
speckle separation (sp sep) distance. 

It is important to describe the gross discriminative effect of each of the most 
significant parameters used to build the on-line quantitative tissue characterization system 
(QTCS). 

The MGL physical meaning is the brightness or echogenicity of texture, which most 
of the sonographers write in their ultrasound reports. It is well established that in fatty and 
cirrhotic livers the echogenicity is higher (Behan et al., 1978). 
 The integration of the histogram will yield the distribution function from which we 
can extract the percentiles that express what is the gray level at which % of pixels has certain 
level i.e. for example from 0 to 255 gray level there are 90% of the gray level from 0 to 200, 
this is the 9

 th
 percentile. 

Correlation is a measure of the linearity of the gray levels relationship in related 
pixels i.e. a measure of homogenicity. 

Average diffuse intensity (ID), average specular intensity (IS) and specular separation 
“measured from ID and IS values” are textural parameters give information about the texture 
of the tissue. Attenuation is the amount of ultrasound wave decay by depth in given tissue. 

Contrast (CON) is defined as a measure of how many large gray level differences are 
present in the region of interest. Frequently occurring large gray level differences increase the 
contrast value, whereas soft texture results in small contrast value (Raeth et al, 1985). 

Angular second moment (ASM) and entropy (ENT) characterize the distribution of 
co-occurrence matrix entries in a gray level-independent way. ASM increases when the co-
occurrence matrix values are clustering around a major gray level transition. This corresponds 
to a situation where only a small number of different gray level transitions exist. Entropy 
measures the homogeneity or uniformity of the tissue, and therefore it increases with 
increasing coarseness of the image texture (Kadah et al., 1996). 

 
II.  Construction of the Neural Network: 

 
Neural networks are a special kind of flexible model. They consist of networks of 

elements, each element or node computes a weighted sum of its input and applies a function 
of some kind to generate an output, hence the analogy with neurons. Nodes are arranged in 
layers. The input layer receives input, which may be raw image data (as in our case), 
processed image data or information about the features of an interpreted image. The output 
layer provides the response of the system (the diagnosis in our case). Most neural nets used in 
object recognition system include a single “hidden” layer between the input and output. 

To use the system for object recognition they must be first trained. Training consists 
of providing the system with examples of the possible input (different ultrasound images of 
various liver pathologies in our case) and allowing a control loop (e.g. feedback or feed-
forward) to adjust the weights of the system’s nodes to produce the required output. The 
system is considered a success if it is able to generalize what it has learnt and classify new 
examples correctly (Badawi  et al., 1996, Kadah et al., 1996). (E.g. in the training phase the 
input layer receives the data (x1&x2…. etc) that will be processed in the hidden layer 
(augmented by variable weights) to adjust the output toward the required output (required 
diagnosis). 

In this work, feature extraction algorithms are proposed to extract the tissue 



characterization parameters from liver images. Then the resulting parameter were processed 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

Figure 3: Neural network architecture for multilayer network. 
 
as follows to construct the neural network: 

• Preprocessing: 
An important initial step in all algorithms is to cut the data set into two independent 

subsets namely, training and test sets.  
The training set in our study included, 6 control subjects, 10 patients with fatty liver, 12 
patients with chronic hepatitis and 4 cirrhotic patients while the test set included, 6 control 
subjects, 6 patients with fatty liver, 10 patients with chronic hepatitis and 3 cirrhotic patients. 
        This preliminary step effectively avoids introducing false-negative bias effects. Also, 
the effect of normalization of all parameter values within a fixed range around the zero 
(between ±1) is studied as a possible convenient preprocessing step for proper weighing of 
parameters. This effectively help speeding up the training by moving the operating point to 
the linear portion of the neuron activation function, which has the highest slope. Also, each of 
the possible pathologies is assigned a binary digit which can take only 2 values: 
present/absent, which are mutually exclusive. 
 

• Training different multi-layer perceptron architectures: 
  In these architectures , the network consists of a first (hidden) layer of variable 
number of perceptrons feeding a second (output) layer of size equal to the number of 
pathologies (4 groups in our study, namely; fatty change, chronic hepatitis, cirrhosis and 
control). Various hidden layer sizes were used and the output was produced by a binary or a 
maximum response decision criteria to decide one of the four pathologies. The algorithm used 
to train this class is the Multi-Layer Back Propagation training algorithm.  We had 10000 
iteration for learning. MSE was found to be 0.1. The learning factor was set to 0.3, the 
momentum term was used to accelerate training convergence and was set to 0.7. We applied a 
sigmoidal activation for all our neurons. We had a size of 20 neurons in the hidden layer as 
the optimal size that gave the least MSE results. We have built a special VC++ S/W for image 
processing and automatic diagnosis tasks with a simple to use GUI (Graphical User Interface). 
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III. Testing the efficacy of the network: 
 
1-Test the network after training by classifying the samples from the test set and obtain the 
error rate for the network by calculating the percentage of the number of mis-classified 
samples to the total number of test samples.  
2- Sensitivity, specificity and overall accuracy of the network were calculated. 
Sensitivity is the proportion of subjects with the disease who have a positive test, indicating 
how good a test is at identifying the diseased.  
It equals [true positive/(true positive + false negative) %]. 
Specificity is the proportion of subjects without the disease who have a negative test, indicates 
how good a test is at identifying the non-diseased.  
It equals [true negative/(true negative + false positive) %]. 
Accuracy of a variable is the degree to which it actually represents what it is intended to 
represent. 
It equals [(true negative + true positive/true negative + false positive + true positive + false 
negative) %]. 

RESULTS 
 
The results of this study were statistically analyzed and tabulated in tables 1 through table 21. 
Results of phase I (case study) are shown in table 1 through table 5. Results of phase II 
(tissue characterization) are shown in table 6 through table 15 and the results of testing the 
efficacy of the neural network phase III are shown in table 16 through table 18.  
 
Table (1): Age distribution of 57 studied subjects: 
 Patients 

No. (45) 
Control 
No. (12) 

Range (Ys.): 27-65 Ys. 16-65 Ys. 
Mean ± SD 39.044 ± 7.73 39.1 ± 13.9 
 
Table (2): Sex distribution of 57 studied subjects 
Sex No.                           % No                           % 
Females 34                           75.6 9                              75 
Males 11                           24.4 3                              25  
 
Table (3) Classification of the study group according to histopathological examination: 

Findings No                                                        % 
Fatty liver 16                                                        35.6 
Chronic hepatitis 22                                                        48.9 
Cirrhosis 7                                                          15.6 

 
Table (4) Further classification of the study group according to histopathological 
findings: 
Findings No                              % 
Fatty changes 16                              35.6 
Chronic hepatitis 

• Pure chronic hepatitis. 
22 48.9 
6                              13.3 
16                            35.56 



• Chronic hepatitis & fatty change 
Cirrhosis 

• Pure cirrhosis 
• Cirrhosis& fatty change 

7 15.6 
3 6.66 
4                             8.89 

 
Table (5) Clinical data in different pathological groups: 
 Fatty change(16) 

No                  % 
Chronic hep (22) 
No                  % 

 Cirrhosis (7 ) 
 No                    % 

Sex 
• Male 
• Female 
 

                             
1                    6.3 
15                  93.7 

 
7                    31.8 
15                  68.8 

 
 3                     42.9 
 4                     57.1 

Overweight 
 

13                  81.3 14                  63.6  5                     71.4 

Jaundice 
 

0                        0 10                  45.5  5                     71.4 

 
Table(6a) Measurements of mean gray level (MGL) in 57 study subjects  
according to histopathological classification: 
 Fatty change Chronic hepatitis Cirrhosis Control 
Mean±SD 30.82±1.99 28.28±2.47 29±5.38 22.53±3.75 

 
Table(6b) The P-value of mean gray level (MGL) in different pathological and control 
groups: 

 Fatty Ch. Hep. Cirr. Control 
Fatty * 0.001 0.49 0.000 

Ch. Hep. 0.001 * 0.50 0.000 
Cirr. 0.49 0.50 * 0.01 

Control 0.000 0.000 0.01 * 
 

Table(7a) Measurements of 9 Th. Percentile in 57study subjects according to 
histopathological classification: 
 Fatty change Chronic hepatitis Cirrhosis Control 

Mean±SD 38.1811±3.06 35.68±2.91 34.814±4.35 28.4167±4.23 
 
Table(7b) The P-value of 9 Th. Percentile in different pathological and control groups : 

 Fatty Ch. Hep. Cirr. Control 
Fatty * 0.02 0.09 0.000 

Ch. Hep. 0.02 * 0.63 0.000 
Cirr. 0.09 0.63 * 0.008 

Control 0.000 0.000 0.008 * 
 
Table(8a) Measurements of contrast in 57 study subjects according to histopathological 
classification: 
 Fatty change Chronic hepatitis Cirrhosis Control 

Mean±SD 49.55±8.19 51.12±9.8 55.82±14.17 39.27±9.69 



 
Table(8b) The P-value of contrast in different pathological and control groups: 

 Fatty Ch. Hep. Cirr. Control 
Fatty * 0.59 0.30 0.007 

Ch. Hep. 0.59 * 0.43 0.003 
Cirr. 0.30 0.43 * 0.02 

Control 0.007 0.003 0.02 * 
 

Table(9a) Measurements of ASM in 57 study subjects according to histopathological 
classification: 

 Fatty change Chronic hepatitis Cirrhosis Control 
Mean±SD 0.0038±0.002 0.0033±0.001 0.0031±0.001 0.0044±0.001 

 
Table(9b) The P-value of ASM in different pathological and control groups: 

 Fatty Ch. Hep. Cirr. Control 
Fatty * 0.16 0.13 0.33 

Ch. Hep. 0.16 * 0.47 0.01 
Cirr. 0.13 0.47 * 0.009 

Control 0.33 0.01 0.009 * 
 
Table(10a) Measurements entropy (ENT.) of in 57 study subjects according to 
histopathological classification: 
 Fatty change Chronic hepatitis Cirrhosis Control 

Mean±SD 5.909±0.305 5.987±0.335 5.999±0.223 5.618±0.2565 
 
Table(10b) The P-value of in different pathological and control groups: 

 Fatty Ch. Hep. Cirr. Control 
Fatty * 0.59 0.48 0.58 

Ch. Hep. 0.59 * 0.90 0.003 
Cirr. 0.48 0.90 * 0.000 

Control 0.58 0.003 0.000 * 
 
Table(11a) Measurements of correlation in 57 study subjects according to 
histopathological classification: 

 Fatty change Chronic hepatitis Cirrhosis Control 
Mean±SD 0.1317±0.155 0.130±0.13 0.1449±0.097 0.107±0.089 

 
Table(11b) The P-value of correlation in different pathological and control groups: 

 Fatty Ch. Hep. Cirr. Control 

Fatty * 0.89 0.80 0.606 
Ch. Hep. 0.98 * 0.76 0.55 

Cirr. 0.80 0.76 * 0.41 
Control 0.606 0.55 0.41 * 

 
Table(12a) Measurements of attenuation coefficient (Atten) in 57 study subjects 
according to histopathological classification: 
 Fatty change Chronic hepatitis Cirrhosis Control 

Mean±SD 0.570±0.055 0.56±0.07 0.482±0.03 0.476±0.04 



 
Table(12b) The P-value of attenuation coefficient (Atten) in different pathological and 
control groups: 

 Fatty Ch. Hep. Cirr. Control 
Fatty * 0.90 0.000 0.000 

Ch. Hep. 0.90 * 0.006 0.000 
Cirr. 0.000 0.006 * 0.694 

Control 0.000 0.000 0.694 * 
 
Table(13a) Measurements of ID in 57 study subjects according to histopathological 
classification: 
 Fatty change Chronic hepatitis Cirrhosis Control 

Mean±SD 55.87±25.98 47.76±14.06 61.87±21.47 48.07±24.84 
 
Table(13b) The P-value of ID in different pathological and control groups: 

 Fatty Ch. Hep. Cirr. Control 
Fatty * 0.26 0.57 0.42 

Ch. Hep. 0.26 * 0.14 0.963 
Cirr. 0.57 0.14 * 0.22 

Control 0.42 0.963 0.22 * 
 
Table(14a) Measurements of IS in 57 study subjects according to histopathological 
classification: 
 Fatty change Chronic hepatitis Cirrhosis Control 

Mean±SD 875.51±215.59 759.55±160.93 799.2±528.2 485.95±191.6 
 
Table(14b) The P-value of IS in different pathological and control groups: 

 Fatty Ch. Hep. Cirr. Control 
Fatty * 0.08 0.51 0.000 

Ch. Hep. 0.08 * 0.71 0.000 
Cirr. 0.51 0.71 * 0.019 

Control 0.000 0.000 0.019 * 
 
Table(15a) Measurements speckle separation of in 57 study subjects according to 
histopathological classification: 

 Fatty change Chronic hepatitis Cirrhosis Control 
Mean±SD 2.156±1.05 2.316±0.57 2.714±0.923 1.832±0.683 

 
Table(15b) The P-value of in different pathological and control groups: 

 Fatty Ch. Hep. Cirr. Control 
Fatty * 0.59 0.22 0.34 

Ch. Hep. 0.59 * 0.17 0.05 
Cirr. 0.22 0.17 * 0.05 

Control 0.34 0.05 0.05 * 
 
Table (16): The results of testing the efficacy the neural network in diagnosis of training 
set. 
Group No. of recognized cases No. of unrecognized cases 



Fatty group (10) 90% 10% 

Chronic hepatitis 

group (12) 

92.7% 8.3% 

Cirrhosis group (4) 100% 0% 

Control group (6) 100% 0% 

 

Table (17): The results of testing the efficacy the neural network in diagnosis of test set. 

Group No. of recognized cases No. of unrecognized cases 

Fatty group (6) 83.4% 16.6% 

Chronic hepatitis 

group (10) 

90% 10% 

Cirrhosis group (3) 100% 0% 

Control group (4) 100% 0% 

 

Table (18): Assessment of sensitivity, specificity and accuracy of the neural network in 

the diagnosis of bright liver cases. 

 Sensitivity Specificity Accuracy 

training set 92.30% 100% 93.75% 

test set 89.47% 100% 91.3% 

Total 91.11% 100% 92.72% 

 

 
DISCUSSION AND CONCLUSION 

 
It was reported that various causes of bright liver include cirrhosis, chronic hepatitis, 

severe long standing cardiac failure, diffuse lymphoma, diffuse hepatocellular carcinoma, 
glycogen storage disease and hemochromatosis (Skolnick M., 1986). Among 41 Egyptians 
patients with ultrasonically detected bright liver, cirrhosis was found in (12.2%), chronic 
hepatitis in (51.22%), fatty liver in (34.15%) and granulomatous hepatitis in (2.43%) (Ahmed 
L. et al., 1993). Our study included 45 patients with biopsy-proven liver disease together with 
12 healthy subjects as a control. Based on the results of liver biopsy and ultrasonographic 
findings, they were classified into 4 groups; fatty change group (28%), chronic hepatitis group 
(38.6%), cirrhotics (12.3) and controls (21%).  

 
In this study, the mean gray level (MGL) was highest in the fatty group patients (the 

brightest images). It was significantly higher in the fatty group patients than in chronic 
hepatitis and control group (see table 6). Also, in cirrhotic patients the mean gray levels were 
significantly higher than control group subjects. The 9

 Th.
 percentile of the gray level was 

found significantly higher in fatty, chronic hepatitis and cirrhotics, when compared to the 



control group (see table 7). Similar results were observed by Haberkorn et al (1990), they 
reported increase of the first order gray level statistics which correlated well with the structure 
as well as brightness of the ultrasound image in biopsy proven cirrhotic and fatty patients.  

Layer et al.  (1991) showed that the mean gray level correlates better with total lipid 
content than with the amount of connective tissue. Furthermore, they demonstrated, in vitro 
study, that connective tissue leads only to a weak increase in the mean gray level, whereas the 
addition of connective tissue to a given tissue lipid can lead to a reduction in image 
brightness. 
 
 Measurement of histogram has been implemented on several commercial ultrasonic 
scanners, which allows calculation of the mean intensity value and variance of the pixels in a 
given region of interest. This form of analysis has been little used since mean pixel gray level 
is strongly dependent on the gain settings used and no method for standardization or 
calibration of the intensity levels is usually available. 

 
The parameters taken from the histogram can not be used to quantify the number, size 

and orientation of localized texture structures in the image due to lack of spatial information. 
That is why we need parameters from the cooccurrence matrix which is a two-dimensional 
histogram characterizing the occurrence gray level combinations in pairs of spatially related 
pixels (Layer et al., 1990).  

 
In this study, contrast, entropy, correlation and angular second moment were extracted 

from the cooccurrence matrix. These parameters measure not only the occurrence frequencies 
of gray levels but also used the spatial interdependencies between the image elements 
(pixels). 
   
  Contrast defines the coarseness of texture. Frequently occurring large gray level 
differences increase the contrast value, whereas soft texture results in small contrast value 
(Raeth et al., 1985). It was higher in cirrhosis and chronic hepatitis group than fatty and 
control groups (see table 8). This may be due to large gray level difference between fibrous 
tissue and surrounding parenchyma in cirrhotic patients. 
   
  Angular second moment and entropy characterizes the distribution of cooccurrence 
matrix in a gray level-independent way. Angular second moment increases when the co-
occurrence matrix values are clustering around a major gray level transition. This corresponds 
to a situation where only a small number of different gray level transitions exist (i.e., 
homogeneity). Among our patients the ASM was higher (more homogeneous) among fatty 
and chronic hepatitis group than among cirrhotic group (see table 9).  Entropy measures the 
homogeneity or uniformity of the image elements (pixels) and therefore it increases with 
increasing coarseness of the image texture (Raeth et al., 1985). So, it was suspected to be 
significantly higher in cirrhotic group due to the coarse texture. However, it was slightly 
higher among chronic hepatitis and cirrhotic groups (see table 10). This may be due the 
majority our patients were in the early stages and cases with coarse echopattern were 
excluded. 
 
  Correlation measures the linearity of the relationship of the gray levels in d-related 
pixels. In homogeneous texture the transitions in the difference between the gray levels 
between neighboring pixels are little (i.e. low correlation values), while in coarse texture, the 
transitions of gray levels are frequent (i.e. high correlation values) (Badawi et al., 1996). In 
our study the correlation was found statistically indifferent in all pathological and control 



groups (see table 11). However, the correlation values were found to be a little higher among 
cirrhotic patients. These results may also be due to the early cirrhotic cases found. 
 

Attenuation is simply the loss of energy of an ultrasound signal as it is propagated 
through tissue.  In this study, the estimated mean attenuation value for control cases was 
0.476±0.04 dB/cm./MHz (see table 12). The attenuation of normal liver has generally been 
reported to be between 0.5 and 0.6 dB/cm./MHz. Higher values for attenuation were reported 
in the early literature yet rather recent literature suggested that attenuation in normal liver is 
approximately 0.5 dB/cm/MHz (Garra, 1991).  
   
  In vivo work by Lin et al.  (1988) demonstrated that both fibrosis and fatty infiltration 
produced increased attenuation. In this study, Attenuation was found significantly higher in 
fatty group and chronic hepatitis group than the control group and the cirrhotic group. These 
results are in agreement with Parker et al.  (1988a&b) who confirmed elevated attenuation in 
fatty livers and suggested that fibrosis could also produce elevated attenuation values. Also, 
Garra (1991) suggested that elevated attenuation in cirrhotics be primarily due to concomitant 
fatty infiltration with fibrosis, playing a smaller role (if any). 
 

On the other hand, Lin et al.  (1988) stated that cirrhotics had elevated attenuation 
values. In summary, attenuation estimation has made it possible to separate normal livers 
from certain disease states. Unfortunately, in the liver, elevated attenuation appears to be 
primarily related to fatty infiltration rather than the more important changes of inflammation 
and fibrosis. This severely limits the usefulness of attenuation estimation for the 
characterization of liver disease. 

 
The granular texture of ultrasonic images has become known as ultrasonic speckle. 

The tissue scatters vary in size and shape and those different structures have varying degrees 
of spatial order. A simple biological scattering medium is blood where the scatters are small 
and completely disordered. Ultrasonic backscatter from this type of material is known as 
Rayleigh (random) scattering in which a histogram of pixel intensities of random (diffuse) 
scatters (Id) (see table 13) follows a characteristic distribution. In addition to random scatters, 
most biological tissues also have another two types of non-random (specular) scatters: those 
of one type are ordered over very short distances such as those composing the walls of blood 
vessels and organ, the second type are organized over longer distances and contribute a 
specular backscatter intensity (Is) (see table 14). 

 
Tissue characterization features based on the relative contributions of intensities from 

diffuse scatters and specular scatterers may be estimated using the average autocorrelation 
function. From the autocorrelation function and speckle power spectrum Id and Is are 
obtained. These quantities have been tested on patient data and have been found to be useful 
for separating normal from diseased liver tissue (Wagner, 1987).  

 
Garra, (1989) found that Is/Id (the ratio of specular to diffuse backscatter intensities) 

is a measure of the variability in the specular component to detect various types of diffuse 
liver diseases. However, in our study no statistically significant difference between 
pathological groups were observed. 

 
 The speckle separation distance is the average distance between regularly positioned 
specular scatters (mean scatterer distance). It can be measured from the speckle power 
spectrum . 



 
In this study, the speckle separation distance was found to be higher in cirrhotics and 

chronic hepatitis group than in fatty and control groups (see table 15). This was similar to 
results obtained by Fellingham and Sommer (1984). They found that the mean scatter 
spacing was significantly increased in patients with liver cirrhosis when compared to healthy 
subjects. This was explained by the coarse texture observed in these cases. These results are 
also similar to those obtained by Suzuki et al.  (1991) who found that The spaces between 
scatterers for liver cirrhosis was significantly larger than that for chronic hepatitis and 
nonspecific change. 
 

The sensitivity (91.11%), specificity (100%) and accuracy (92.72%) obtained in this 
study (see tables 15,17,18) for diagnosis of diffuse liver diseases presented by bright liver in 
their ultrasonic examination is greater than the results obtained by conventional 
ultrasonography (70%), and comparable to results obtained by computer assisted studies for 
authors as: Rath et al. (1984) reported (85%,95%,90), Lerski et al.(1982) reported (-,-,87%), 
King et al. (1985) reported (88%,100%,95%), Schuster et al., (1988) reported (94-97%,87-
100%,90-98%). 

 
Computer-assisted sonographic tissue characterization using the neural network 

classifier is a sensitive and specific technique for separating diffuse liver disease namely; 
fatty, cirrhotic, chronic active hepatitis cases with ultrasonically detected bright liver from 
control cases. We may recommend to increase number of cases and number of pathological 
classes  for example mixed liver pathology so as to increase sensitivity, specificity and overall 
accuracy which may replace histopathology in the future. We also recommend the application 
of this computerized system for automatic diagnosis of focal liver diseases. 
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