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Abstract - A new features extraction algorithms for G-
banded chromosomes classification system based on 
neural networks, fuzzy rule based and template matching 
classifiers are proposed. Chromosomes image is acquired 
and processed, geometrical features and gray-scale 
features are extracted for 872 chromosomes. Neural 
networks, fuzzy rule based, template matching classifiers 
results were compared. Classification rates were found to 
be over 99% for training and over 96% for testing sets. 
 

I. INTRODUCTION 
 
Great efforts to develop automatic chromosome 
classification techniques have been made during the last 
25 years. However, all have had limited success and have 
yielded lower classification results compared to those of a 
trained cytotechnician [1-8]. In this paper we propose an 
automatic Karytyping system for G-banded images based 
on neural networks, fuzzy rule based and template 
matching classifiers. 
 

II. CHROMOSOMES IMAGE SEPARATION 
 
The image is first segmented (Black and white) using 
OTSU algorithm [9].  Figure 1a shows a grayscale image 
and Figure 1b shows its segmented image. Contours were 
then detected, traced, regions were then thinned and 
processed to get its full medial axis as shown in Figure 2. 
Finally using a new chromosomes separation algorithm 
[10], image was separated as shown in Figure 3a. 
Manually classified image by an expert is shown in Figure 
3b.   

 
III. FEATURES EXTRACTION 

 
Figure 4 shows a flowchart for different processes used to 
extract features and matching process. Final features were 
extracted through many processes and will be described in 
the following sections.  
 
A.   Chromosome Real Banding Profile Extraction 
The profile is extracted along the chromosome medial 
axis and is represented as a gray-level function of the 
medial axis points or as an average of the points 
perpendicular to the medial axis. Maxima and minima 
points and real band borders points were extracted. Figure 

5 shows a chromosome profile, its maxima-minima 
points, and its real banding thickness. Real banding 
associated with number of maxima-minima points are 
estimated by taking the graylevel derivatives along band 
medial axis. Real bands thicknesses were calculated by 
getting the point of maximum grayscale transition 
between every maxima and minima point. Figure 6 shows 
one of  the  satellite  chromosomes with  its  automatically 
    

 

 
Figure 1 

a) Original G-banded image b) Segmented image using OTSU algorithm 



 
Figure 2 

Contours and its medial axis skeleton 

 
Figure 3 

a) Separated image b) Manual classified and aligned image  

 
Figure 4 

Flowchart for features extraction and matching process 

 

 
Figure 5 

 Profile for the shown chromosome 
 

 
Figure 6 

a) Maxima-minima, real thickness points b) Chromosome profile with 
the points 

 
extracted centromere position [10] together with the 
maxima and minima points as well the points of 
maximum grayscale transition along the profile (Band 
borders points). 
 
B.    Proposed Chromosome Features Categories 
Geometric and grayscale features were extracted [10]. 
Geometric features were normalized using the maximum 
length chromosome in the image. The following 
categories of features were then extracted: 
1) G-Banding grayscale profile features:  
These are 12 fixed thickness grayscale average features. 
2) Global chromosome’s features: 
a) Medial axis length (Normalized) 
b) Contour length (Normalized) 
c) Area (Normalized) 
d) Mass (Normalized)  
3) Chromosome’s centromeric features: 
a) Medial axis length ratio of P/Q (Normalized) 
b) Contour length P/Q ratio (Normalized) 



c) Area P/Q ratio (Normalized) 
d) Mass P/Q ratio (Normalized)  
4) Number of real bands:  
Number of maxima & minima in profile.  
5) Real gray level banding:  
These are the average graylevel of the real band (sampled 
to 42).  
6) Distances between centers of bands: 
These are the distances between the bands centers  
(sampled to 42).  
7) Real bands thickness: 
These are the real banding thickness (sampled to 42). 
 
All these proposed features are of unequal-sizes and 
depends on specific chromosome type. Unequal real 
banding parameters were stretched (sampled) to a size of 
42 which is the maximum number of hills and valleys 
found in the profile. Figure 7 shows point (Along medial 
axis points) based real banding model and its 
automatically extracted centromere position. Figure 8 
shows average (Average of grayscale along a 
perpendicular line of medial axis points) banding profile 
points. Figure 9 shows cytogenetic ideogram map 
indicating real number of bands, normalized thickness of 
bands, and exact centromere position. 
 

IV. PROPOSED MATCHING METHODS 
 

A dataset of 20 images of 46 chromosomes each are 
divided into two sets, one to get training templates while 
the other to test the proposed matching system. All the 
features were extracted for all the training and testing 
chromosomes. Three different classification methods were 
used and were compared for the optimal chromosome 
classification technique to be used later. 
 
A.   Neural Networks 
Training different mult i-layer perceptron Neural Network 
architecture is shown in Figure 10 (60 Hidden neurons, 
30000 Epochs,0.001 goal MSE, 0.02 Learning factor, and 
0.7 Momentum term). The algorithm used to train this 
class of networks is the Multi-Layer BackPropagation 
training algorithm [11].  

 
Figure 7 

 Point based generated banding model 

 
Figure 8 

Average based generated banding model 

 
Figure 9 

Ideograms map  
 

 
Figure 10 

Neural network architecture for multilayer network 
 

B.   Fuzzy Rule Based  
Features vectors were first fuzzified using its defined 
membership functions of 11 fuzzy sets each as shown in 
Figure 11. The training set of 593 vectors for 24 classes of 
chromosomes were used to derive the fuzzy rules. 279 
vectors are used to test the system. Output fuzzy sets are 
shown in Figure 12. Fuzzy rules were first generated, 



validated, and then were used to evaluate the system via 
an inference mechanism using SUP MIN compositional 
rule of inference [12-19]. 
 
C.   Template Matching  
The 24 template chromosomes types are from 
chromosome 1-22, X, and Y chromosomes. For example 
among the 40 chromosomes of type 1, 28 templates were 
averaged to get the average template of chromosome 1 
while 12 are used to test the template matching technique. 
Features were normalized and stretched to get an overall 
average template of fixed length for every type [10]. After 
extracting the mentioned categories of fixed length and 
variable length features, we stretched banding to the 
maximum number of maxima and minima found in the 
profile (42 bands) so that all variable parameters are 
sampled to a size of 42. Matching is done with both the 
training template and the cytogenetic  ideograms map. In 
this stage we have a set of reference patterns (templates) 
and we have to decide which one of these reference 
patterns an unknown one (test pattern) matches best. A 
defined simple measure for fixed length features is the 
Euclidean distance cost measure [11] between template 
and test vectors . Euclidean cost measures for all features 
after stretching to fixed size were calculated. These cost 
measures were weighted average to get an overall cost 
measure of similarity using a neural network [10], where 
we trained a net taking the inputs as the costs and the 
output is either one if correctly classified and zero if not. 
Then in classification, first we get the costs of different 
features of this chromosome with either the templates or 
the whole references, then entering these costs to the net, 
the one having highest output will be classified to that 
chromosome average template or reference.  A test vector 
is assigned to that class having the minimum overall cost 
(Sum). Twelve cost functions (contour-length, medial-axis  
length, area, mass, contour length-centromeric-index, 
medial-axis-length-centromeric index, mass-centromeric-
index, banding-numbers, 12-fixed-length-banding-profile, 
real bands grayscale, and real-band-thicknesses) were 
weighted using neural networks for maximum recognition 
[10].  
 

 
Figure 11 

 Example of a fuzzy membership functions of grayscale band 

 
Figure 12 

Fuzzy membership functions for the output 
 

V. RESULTS  
 

A Neural Networks classification, Fuzzy Rule Based 
classification, and Template Matching classification 
results were compared and are shown in table 1.   Figure 
13 shows a Klinefelter chromosomes metaphase image. 
Figure 14 shows its manual Karytyping image. Figure 15 
shows output of a Neural Network classification for the 
image shown in Figure 13, where a misclassified 
chromosome (5) that should be (4), and a misclassified 
chromosome (12) that should be chromosome (9). Table 2 
shows a comparison of testing times using different 
classification methods using Pentium 4, 2.4 Mhz, and  512 
MRAM computer. 
 

Table   I 
Classification Results Comparison  

 
 

 
Figure 13 

Klinefelter image 



 
Figure 14 

Manual Karyotyping  

 
Figure 15 

Neural  Networks  (95.56%) classification result. 

 
Table  II 

Overall Testing Time Comparison 
Testing Time  Seconds 

Fuzzy rule based ~0.5 sec 
Neural networks ~0.1 sec 

Matching with 24 templates ~0.1 sec 
Matching with all references ~2.5 sec 

 
VI. CONCLUSIONS  

 
A new features extraction and classification algorithms  for 
real G-banded chromosomes images is proposed. Real 
bands grayleves features and real band thicknesses 
features as well as real number of bands (hills and valleys) 
were automatically extracted for every chromosome 
together with the shape and fixed banding features. 
Classification results were found to be more than 93% and 
were compared for different classification methods. The 
matching comparison results of the three classification 
methods using the whole features categories suggests the 
usage of template matching method with all the references 
since it has the highest classification rate among other 
methods (96.89%). Real banding graylevels and thickness 
will be suitable to analyze chromosome deletions and 
translocations via   bands registration to diagnose 
structural abnormalities.   
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