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Abstract - A new features extraction algorithms for G-
banded chromosomes classification system based on
neural networks, fuzzy rule based and template matching
classifiers are proposed. Chromosomes image is acquired
and processed, geometrical features and gray-scale
features are extracted for 872 chromosomes. Neural
networks, fuzzy rule based, template matching classifiers
results were compared. Classification rates were found to
be over 99% for training and over 96% for testing sets.

|. INTRODUCTION

Great efforts to develop automatic chromosome
classification techniques have been made during the last
25 years. However, al have had limited success and have
yielded lower classification results compared to those of a
trained cytotechnician [1-8]. In this paper we propose an
automatic Karytyping system for Gbanded images based
on neural networks, fuzzy rule based and template
matching classifiers.

[1. CHROMOSOMES IMAGE SEPARATION

The image is first segmented (Black and white) using
OTSU algorithm [9]. Figure la shows a grayscale image
and Figure 1b shows its segmented image. Contours were
then detected, traced, regions were then thinned and
processed to get its full media axis as shown in Figure 2.
Finally using a new diromosomes separation algorithm
[10], image was separated as shown in Figure 3a
Manually classified image by an expert is shown in Figure
3b.

[1l. FEATURES EXTRACTION

Figure 4 shows a flowchart for different processes used to
extract features and matching process. Final features were
extracted through many processes and will be described in
the following sections.

A. Chromosome Real Banding Profile Extraction

The profile is extracted aong the chromosome medial
axis and is represented as a gray-level function of the
medial axis points or as an average of the points
perpendicular to the medial axis. Maxima and minima
points and real band borders points were extracted. Figure

5 shows a chromosome profile, its maxima-minima
points, and its rea banding thickness. Real banding
associated with number of maxima-minima points are
estimated by taking the graylevel derivatives along band
medial axis. Real bands thicknesses were calculated by
getting the point of maximum grayscale transition
between every maxima and minima point. Figure 6 shows
one of the satellite chromosomeswith its automatically

Figure 1
@) Original G-banded image b) Segmented image using OTSU agorithm



Figure 2
Contours and its media axis skeleton
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Figure 3
a) Separated image b) M anual classified end aligned image
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Figure 4
Flowchart for features extraction and matching process

Figure 5
Profile for the shown chromosome

.
Figure 6
a) Maximaminima, real thickness points b) Chromosome profile with
the points

extracted centromere position [10] together with the
maxima and minima points as well the points of
maximum grayscale transition along the profile (Band
borders points).

B. Proposed Chromosome Features Categories
Geometric and grayscale features were extracted [10].
Geometric features were normalized using the maximum
length chromosome in the image. The following
categories of features were then extracted:

1) G-Banding grayscale profile features:

These are 12 fixed thickness grayscal e average features.

2) Global chromosome’s features:

a) Medial axislength (Normalized)

b) Contour length (Normalized)

c) Area (Normalized)

d) Mass (Normalized)

3) Chromosome’s centromeric features:

a) Media axislength ratio of P/Q (Normalized)

b) Contour length P/Q ratio (Normalized)



¢) Area P/Qratio (Normalized)

d) Mass P/Q ratio (Normalized)

4) Number of real bands

Number of maxima & minimain profile.

5) Real gray level banding:

These are the average graylevel of the real band (sampled
to 42).

6) Distances between centers of bands

These are the distances between the bands centers
(sampled to 42).

7) Real bands thickness:

These are the real banding thickness (sampled to 42).

All these proposed features are of unequal-sizes and
depends on specific chromosome type. Unequal real
banding parameters were stretched (sampled) to a size of
42 which is the maximum number of hills and valleys
found in the profile. Figure 7 shows point (Along media
axis points) based real banding model and its
automatically extracted centromere position. Figure 8
shows average (Average of grayscale aong a
perpendicular line of medial axis points) banding profile
points. Figure 9 shows cytogenetic ideogram map
indicating real number of bands, normalized thickness of
bands, and exact centromere position.

V. PROPOSED MATCHING METHODS

A dataset of 20 images of 46 chromosomes each are
divided into two sets, one to get training templates while
the other to test the proposed matching system. All the
features were extracted for al the training and testing
chromosomes. Three different classification methods were
used and were compared for the optimal chromosome
classification technique to be used later.

A. Neural Networks

Training different multi-layer perceptron Neural Network
architecture is shown in Figure 10 (60 Hidden neurons,
30000 Epochs,0.001 goal MSE, 0.02 Learning factor, and
0.7 Momentum term). The algorithm used to train this
class of networks is the Multi-Layer BackPropagation
training algorithm [11].

D AU LU Py
e ) DRIk
B2 omgE omsn fEaE uaf

\\ ¥4 !Em 9_
AT TR T

dEEE MEME MR RAR A 3|5i
L
& SR eee bEm  fRuE
Figure 7

Point based generated banding model
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Average based generated banding model
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Figure 10
Neural network architecture for multilayer network

B. Fuzzy Rule Based

Features vectors were first fuzzified using its defined
membership functions of 11 fuzzy sets each as shown in
Figure 11. The training set of 593 vectors for 24 classes of
chromosomes were used to derive the fuzzy rules. 279
vectors are used to test the system. Output fuzzy sets are
shown in Figure 12. Fuzzy rules were first generated,



validated, and then were used to evaluate the systemvia
an inference mechanism using SUP MIN compositional
rule of inference [12-19].

C. Template Matching

The 24 template chromosomes types are from
chromosome 1-22, X, and Y chromosomes. For example
among the 40 chromosomes of type 1, 28 templates were
averaged to get the average template of chromosome 1
while 12 are used to test the template matching technique.
Features were normalized and stretched to get an overall
average template of fixed length for every type [10]. After
extracting the mentioned categories of fixed length and
variable length features, we stretched banding to the
maximum number of maxima and minima found in the
profile (42 bands) so that all variable parameters are
sampled to a size of 42. Matching is done with both the
training template and the cytogenetic ideograms map. In
this stage we have a set of reference patterns (templates)
and we have to decide which one of these reference
patterns an unknown one (test pattern) matches best. A
defined simple measure for fixed length features is the
Euclidean distance cost measure [11] between template
and test vectors. Euclidean cost measures for all features
after stretching to fixed size were calculated. These cost
measures were weighted average to get an overall cost
measure of similarity using a neural network [10], where
we trained a net taking the inputs as the costs and the
output is either one if correctly classified and zero if not.
Then in classification, first we get the costs of different
features of this chromosome with either the templates or
the whole references, then entering these costs to the net,
the one having highest output will be classified to that
chromosome average template or reference. A test vector
is assigned to that class having the minimum overall cost
(Sum). Twelve cost functions (contour-length, medial-axis
length, area, mass, contour length-centromeric-index,
medial-axis-length-centromeric index, mass-centromeric-
index, banding-numbers, 12-fixed-length-banding-profile,
real bands grayscale, and real-band-thicknesses) were
weighted using neural networks for maximum recognition
[10].
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Figure 11
Example of afuzzy membership functions of grayscale band
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Figure 12
Fuzzy membership functions for the output

V. RESULTS

A Neural Networks classification, Fuzzy Rule Based
classification, and Template Matching classification
results were compared and are shown in table 1. Figure
13 shows a Klinefelter chromosomes metaphase image.
Figure 14 shows its manual Karytyping image. Figure 15
shows output of a Neural Network classification for the
image shown in Figure 13, where a misclassified
chromosome (5) that should be (4), and a misclassified
chromosome (12) that should be chromosome (9). Table 2
shows a comparison of testing times using different
classification methods using Pentium 4, 24 Mhz, and 512
MRAM computer.

Table |
Classification Results Comparison
Clazsification Method Training % Testing %o
Fuzzy Bule Based Classification 100 9354
Neural Metworks Clagsification 58.81 5476
Matching with 24 average templates 96.9 95.96
Matching with all reference vectors 9765 96,89

Figure 13
Klinefelter image
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Figure 14
Manual Karyotyping
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Figure 15
Neural Networks (95.56%) classification result.
Table1l
Overall Testing Time Comparison
Testing Time Seconds
Fuzzy rule based ~05 s
Neural networks ~0.1 s
Matching with 24 templates ~0.1 s
Matching with all ref erences ~25 ¢

V1. CONCLUSIONS

A new features extraction and classification algorithms for
real G-banded chromosomes images is proposed. Real
bands grayleves features and real band thicknesses
features as well as real number of bands (hills and valleys)
were automatically extracted for every chromosome
together with the shape and fixed banding features.
Classification results were found to be more than 93% and
were compared for different classification methods. The
matching comparison results of the tree classification
methods using the whole features categories suggests the
usage of template matching method with all the references
since it has the highest classification rate among other
methods (96.89%). Real banding graylevels and thickness
will be suitable to analyze chromosome deletions and
translocations via bands registration to diagnose
structural abnormalities.
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