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Matrix Structural Analysis — the Stiffness Method"

Matrix structural analyses solve practical problems of trusses, beams, and
frames. The stiffness method is currently the most common matrix structural
analysis technique because it is amenable to computer programming. It is
important to understand how the method works. This document is essentially
a brief introduction to the stiffness method (known as the finite element
method, particularly when applied to continuum solid components).

Axial Bars (1-Dim)

For their simplicity, axial bars are useful in illustrating the method. We will
show the basic data to be inputted to a computer program. Fig. 1 shows a 1-
dim axially loaded bar. Let P =24 kN, Aapc = 400 mm?, Acg = 600 mm?, L = 80
mm, and E = 200 GPa.

3 .
C C B

(2

e /4 = L/4

Fig, 1

A typical computer program should calculate the x-displacement u of all basic
points (named nodes). The nodes of the bar are points A, D, C, and B. The
displacements of nodes A and B are known in advance, simply each is equal
to zero. Therefore, a computer program should calculate the displacements
of nodes D and C (up and uc). A program should calculate the reaction forces
and the forces transmitted through the bar. Moreover, it should calculate the
normal stresses at the segments AD, DC, and CB. Each segment is named
an element.

A. Mansour
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Input Data

The coordinates of the nodes are given below:

Node number Label of Fig.1 X coordinate - m
1 A 0.0

2 D 0.002

3 C 0.004

4 B 0.008

We should inform the program of the nodes associated with each element.

Element number | Label of Fig. 1 1% node 2" node
1 AD 1 2
2 DC 2 3
3 CB 3 4

The previous two tables give the information required to calculate the length
of each element. For instance, the length of element (2), L) = 0.004 — 0.002
= 0.002 m. By the same token L = 0.008 — 0.004 = 0.004 m.

We should specify the material of each element or the relevant properties for

each element.

Element number

Young’'s modulus (E) - Pa

1

200 x 10°

200 x 10°

200 x 10°

2
3
4

200 x 10°

Displacement Boundary Conditions (B.C.)

We know in advance that nodes 1 and 4 are fixed (since 1 and 4 are A and

B).

Node number u

1 0.0
4 0.0

Force (load) Boundary Conditions

The forces at nodes D and C are known
these boundary conditions:

in advance. The following table gives

Node number Fy - (N)
2 +24 000
3 0.0

Fy. is positive because it is in the positive x direction. Usually if u for any node

is known in advance, then F for that nod
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Having a full description of the problem, computer programs can determine all
the nodal displacements and forces. The relationship among these variables
is given below.

Stiffness Matrix

51 l (e) E'FXE /_1_ (e) E'FXE l (e) 8
—[ I_é A — — y
J N (uP-ul) 1
| (ul-ue>
Fig. 2-a Fig. 2=b Fig. 2-c

A typical element (e) is shown in Fig. 2a. The x-displacement of nodes 1 and
2 are us and u,.. The nodal forces are f,1 and .. Of course, fy = -fyo.
However, in order to have a systematic representation, we will keep a
separate name for each nodal force.

The element is elastic and by consulting Fig. 2b,

feo = Ky (U2 — U1) = Ky (U1 + U2)

Where, ke = EA/L ; the elemental stiffness.

Fig. 2c shows that

fa = k(e) (U1 - Uz)

Where, f, is a compressive force and (us — uy) represents a corresponding
contraction of the length of the element.

The following matrix equation represents the previous two equations.

fxl _Dk - k[ u, )
%Qa_%k kHﬁ%% or (1), = [A].(u]

Where [ k ]e is a 2 x 2 stiffness matrix. Now we can see why the method is
named matrix structural analysis or stiffness method.

Temperature Effect
We need to include the effect of temperature rise AT =T — To. Fig. 2b gives:

Uz—U1=fx2/k(e)+GLAT

In addition, Fig. 2c gives

4/25 Matrix Structural Analysis




Mechanics of Structures, 2" year, Mechanical Engineering, Cairo University

U1—U2=fx1/k(e)-GLAT

where, (us — uz) implies that node 1 moves in the positive x direction (the right
direction). On the other hand, a L AT implies that node 1 moves to the left to
allow for the increase in length due to AT. This explains why ( - a L AT ) must
be used.

-1 k- k
EAaATE %+ Ef“H - & - E”IH
1 S . Tk k 0,04,

Degrees of Freedom

Each node can move in the x direction only. Therefore, each node has only
one degree of freedom. Computer programs would address the
displacements by their degrees of freedom (DOF). The displacements of
nodes 1, 2, 3 and 4 correspond to degrees of freedom 1 up to 4. In addition,
f« up to fu corresponds to degrees of freedom 1 up to 4.

Basic Steps in the Method

We will explain the method through the example of Fig. 1. We will calculate
the nodal forces and elemental forces for this bar.

3 4

1 C B
A

R

7

(2>

e /4 == L/4

Fig, 1

The stiffness of each element is:
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ki=E{A// L= (200 x 10°) (400 x 10°) / (0.020) = 4.0 x 10° N/m,
ko=E, A,/ L, = (200 x 10°) (400 x 10°) / (0.020) = 4.0 x 10° N/m,
ks=E3;As/L;= (200 x 10°) (600 x 10°) / (0.040) = 3.0 x 10° N/m.
For element 1:

1 2 DOF

/. 04 =40 u, 0@ (a0 1
- 10 k], = 10
foz%m 4 4HU)H%H o W10 Wl 2

For identification purposes, the coefficients of the stiffness matrix of element 1
are surrounded by one set of round bracket (..). The coefficients for element
2 would be surrounded by two sets of brackets and so forth. This would help
us to keep track of these coefficients in the subsequent steps. Moreover, the
columns and rows of the matrix are identified by their corresponding DOF (1
and 2 for element 1). For instance, the coefficient in the first row and second
column is k2 = (-4) x 10° N/m

For element 2:
2 3 DOF

S 04 41 JO(@) (40 2
= 10 k], =10
Hfﬁ E(z) + 4 4%%%% or M= 100 0y @pd s

For element 3:
3 4 DOF

fall 004 -40 [u el (@) (o 3
H E =107 0 E % or [kl =107 " 0
fx4 (3) D 4 4 3) u4 D((( 4))) (((4))) D 4

As mentioned above, the coefficients of the stiffness matrix of elements two
and three are surrounded by two and three round brackets respectively.

We want to relate the nodal forces and displacements of the whole bar as
follows:

1 2 3 4o, DOF
HFxl H HKII K, K K14H H”l H 1
Dszﬂ: Ka Ky Ky Ky Ou, 0 2
DFx3D UK, Ky Ky K34E D”3D 3
ﬁFﬂ ﬁ 1Ky Ko Ky KyulOgrocrors ﬁ’h ﬁ 4

Where the coefficients of the structure matrix K; are constructed from the
coefficients of the individual stiffness matrices. We place each entry
according to its associated DOF, as shown below:
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1 2 3 Ao DOF
HFle 0(4) (-4) 0 H”lH
F -4) (4)+ (4 -4 0
0F,0_ 1095( ) D+ (4) (-4) 0 Ou, [

4

1
2
FTT Oy @@ @ Wl
i ) (O e tat 4

In the above structure stiffness matrix, empty entries show up because there
is no element connecting nodes 1 and 3, 1 and 4, and 2 and 4. These entries
must be replaced by zeroes as follows.

HFle 04 -4 0 00 HulH
0 0

0F.,0 o 4 8 -4 0 0 Ju, [

0. 0-10 0.0

F, 0o -4 7 -30 u,

0 0 ﬁ ﬁ
ﬁFﬂﬁ 00 0 -3 3 Usrrucrure 144

Solution of the System of Equations

The above matrix equation corresponds to 4 equations. The unknowns are
U2, Us, Fx1, and FX4.

Since us = us = 0, then the coefficients of the stiffness matrix in the first and
fourth columns are always multiplied by zeroes. Hence, we ignore columns 1
and 4. In addition, equations 1 and 4 correspond to the unknown forces Fq
and F.. Thus, we can use these equations later to determine Fx and F,.. For
the time being we are going to use a subset of the matrix, that does not
contain the columns and rows 1 and 4, as shown below.

F., = 24000 ,08 - 40,
o 0L B
Ev3 = O D_ 4 7 D 1/l3

Solve these equations to get u, = 4.2 10° mand u; = 2.4 10° m.

Now, we get the forces from equations 1 and 4:
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(-4 10°) u; + ( 0.0 )u;=-16800 N, and
(

Fxi
Fu=( 0.0 )uz+(-310° us=-7200 N.

Fig. 3 shows the forces acting on the bar. The forces satisfy the equilibrium
equation. The reaction forces are calculated correcily.

Determination of Forces at Each Element

We substitute the calculated displacements in the force-displacement matrix
equation of each element.

Element 1

;f,ﬂ%: el4 - 452 u = 0 E E 16800%
0/ -4 4 0u,=4210° 16800
Element 2

fxza ol 4 -4
=10
_fx3 H' 4 4 H
nd element 3

‘fﬁE_lOgDs’ - 300u, = 2.4 10°° _Enoo%
Sua +3 30 w:=o - 7200

u,=4210°0_0 7200
u,=2410°7 - 7200

CI I 11

Q

[ -

Fig. 4 shows that the forces acting on each element are indeed in equilibrium.
The external forces at any node also must be in equilibrium with the forces
transmitted to the bar. Fig. 4 shows the equilibrium of node 2. We can see
that the external force F.. = 24.0 kN is in equilibrium with the elemental
(internal) forces (fo (1) + fxo @) = 16.8 +7.2=24.0kN ).

24 702
168 : 72 7.2
Sl e
node 2

168 pm—— 168 7.2 2 kN
—t ) }b— @ p—
Fig 4

Stresses in Each Element

We calculate the stresses in each element by dividing the elemental force by
the area of the cross section.

Ox1y =fx / A 1y=16800 /400 10° =42 10° Pa=42 MPa (T)

Ox2) = fo / A 2y = (-7200) / 400 10° =-18 10° Pa=-18 MPa (C)

Ox@) = fxa / A 3 = (-7200) / 600 10° =-12 10° Pa =-12 MPa (C)
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Strains of Each Element

€)= Ox¢y/ E¢y= 42 10°=0.00021 = 0.21 107,
€x2) = Ox (2 / E(z) =-90.0 10_6, and &, @)= -60.0 10°S.

Alternatively, we can calculate the strains from nodal displacements,

€ = (Uz2—u4) /L1 =(4.210°-0)/0.020 = 0.21 10 and so on.

Example (1)
?
é 1w @ Ffo Y
7 N
= 200 mm —=t=— 150 —= - 123
Fig. 5

The bar of Fig. 5 is subjected to F; = 15 kN, and AT = 20°C. A= 100 mm?, Ap) = 75, Ag
=50,E =200 GPa,anda=12x10°/°C

Determine the nodal displacements, the reactions, and the forces transmitted through
each element. Compare between the developed states of stresses for AT = 20°C and
AT =0°C

Solution
The stiffness of each element is:

ki = (200 x 10°) (100 x 10°) /0.2 = 100 x 10° N/m
ko =100 x 10° N/m

ks =80 x 10° N/m

We should calculate the thermal terms ( aEAAT ) for each element:

( aEAAT )(1) =4800 N
(aEAAT )@ = 3600 N
( aEAAT )3 =2400 N
The element equations are:

£ - 48000 0100 - 10000,
Faan 00 100 B
fofly, 04800 - 100 100 Tu,

o, 0736000 0100 - 1007w,
fil 1 3600 =100 100 Hu,f
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2 - 24000 0100 - 100
+ =10 0 0
fuly 0 2400 L 100 100 Ha,
Assemble the equations:

F, (- 4800) 7100 <100 0 0 T
0F.20, 1 (4800)+ ((-3600)) 1_ 106%—100 200 <100 0 u,C
Up 97 03600y) + ((-24000)2" " 0 0 -100 180 - 8007w, "
i D qaooy & B0 0 -8 80w

Boundary conditions
ur=0,us=0 ..... ( we may ignore rows and columns 1 and 4 )
Fw. =0, Fxs = 15000. Hence,

- 10000u,
180 EEM3E

(The above stiffness equation is the reduced stiffness matrix after applying the boundary
conditions.)

1200 +0200
=10°g
16200 - 100

Solve the equations to get

uz = 0.000070615 m
us =0.00012923 m

The reactions are obtained from rows 1 and 4. The following table shows the reactions
at the support when AT = 20°C as well as when AT = 0°C.

AT =20°C | AT =0°C
Fxxi kN | -2.2615 -5.76923
Fxa KN | -12.7384 -9.23072

We can use the element matrix equations to get the forces acting on each element.

Element (1) Element (2) | Element (3)
fu =-2.2615 kN | fo =-2.2615 |fs =127
fo = 2.2615 fis =2.2615 | fu=-12.7

Normal stresses are obtained by dividing each normal force by the corresponding cross

10/25
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sectional area. Elements 1 and 2 are subjected to tensile forces and element 3 is
subjected to a compressive force.

Elemental stresses | AT =20°C | AT =0°C
om (MPa) 23 58

O (MPa) 30 77

O@) (MPa) -255 -185

Properties of the Bar Stiffness Matrix

The bar global stiffness matrix is characterized by the following:

1. Being symmetric. For instance, Ki, = Ka1.

2. Being singular. We cannot evaluate the nodal displacements of the
structure unless at least one nodal displacement is known in advance
as a boundary condition. From a physical point of view, this ensures
that the bar would not move as a rigid body.

3. That every diagonal entry k; = 0.

4. That the summation of the coefficients of each column is equal to zero.
This is useful for checking hand calculations.

An Alternative Derivation of the Element Stiffness Matrix

The following derivation is systematic and can be used easily for other types
of elements. We write the unknown coefficients k; as shown below.

AR A A T G

S Dky Ky 0,0,
The matrix equation is valid for any combination of u; and u,. Take u; =1.0
and u; = 0.0 (Fig. 6). Then fy = ks and fx, = kz1. However, from elementary
mechanics fy = EA/L us =k and f = -k. Therefore, ki1 = k and kz1 = -k.

Taking us = 0 and u; = 1 yields the expressions for the remainder coefficients (
k21 = -k and k22 =Kk )

1 c
e

Flg. 6
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Truss Elements (2-Dim)

Degrees of Freedom

The element has two nodes. Each node has two degrees of freedom, Fig. 7a.
The nodal displacements and forces are shown in Figs. 7b and 7c.

The element is inclined by an angle 6. We are going to implement the
following definitions; ¢ = cos 8 and s = sin O.

Y 4 Ve fye
‘ X > 3 > ue > fxe

C v1 fyl

S
R ul Fx1
DOF 1 1 b 1 o

‘@ Fig. 7 ab, c

1

The Element Stiffness Matrix
The matrix equation is given below.

an i oL ¢ e - - CS%HM' I
0/ 0.
S

%— ¢ -es ¢t cs %Duzu
nyzﬁ A-cs -s° ¢S Dﬁvzﬁ

The matrix has a size of 4 x 4, because there are four degrees of freedom.
The angle 06 is measured in the counter clockwise direction. Hence, 8 is
negative when measured in the clockwise direction. We can use 6 or (0 £
180° ) and still get the same stiffness matrix.

The stiffness matrix is symmetric and singular. Diagonal terms are 2 0. For
each column, the sum of the coefficients in odd rows (as well as those in even
rows) is equal zero.

2 2
cs ) —es -sTgv [

Derivation of [k]
The general expression is:
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fol H Hkn ki, ko ky HH”l H
0/l - ka21 by ky ko Vi O
Dfxz . Hkm ky, ki ky HDuz -
nyZ H Dk ky kg Ky Dﬁvz ﬁ

We would first determine the coefficients of the first column. Take u=1 and
Vi=Ux=Vo = 0

U1 V1 U2 V2

1 0 0 0

Then fx1 = k11, fy1 = k21, fxz = k31, and fyz = k41.

However, we can determine these nodal forces independently.

Due to the imposed displacement u; = 1, the bar contracts by & = u; cos 6=
cos B, Fig. 8. Thenf=kd=kcos0=kc.

The force fis inclined by an angle 8 Resolve f into f,s and fy, to get fxs = f cos
®=kc?andf, =fsinf® =k cs. Thus, ki1 =kc?and ki =k c s.

In addition, by resolving f acting at node 2, we can show that ki1 = - k ¢? and
k41 =-kcs.

We could determine the coefficients of columns 2, 3, and 4 by using the
following displacement states.

Column no. U4 V4 Uz Vo
2 0 1 0 0
3 0 0 1 0
4 0 0 0 1

13/25 Matrix Structural Analysis
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Example (2)

Construct the reduced

stiffnress matrix of the

shown truss, Fig. 9.Then e kN
determine the nodal

displacements and the 3 kN

normal stress in element

3. L(1) = L(z) =2 m, L(3) = <8)
2\/2, A(1) = A(z) = A(3) = 80
mm?, and E = 200 GPa.

3 Fig. S

Solution
Calculate the following quantities:

Element (1) | Element (2) Element (3)
K=EA/L N/m |8x10° 8 x 10° 5.65685 x 10°
0 0 270° (or -90°) | 225° (-135 or 45)
c? 1 0 0.5
s? 0 1 0.5
Cs 0 0 0.5

The stiffness matrix for each element:

Element (1)

8 0 -8 0

L i
00, g0 0 0 0w
St =8 0 () 06w
Hfﬂﬁ 10 0 (0 (O)Dﬁvzﬁ
Element (2)
Hf'“H %0 0 _0 %HulH
0/ 0_ 10650 8§ 0 -8 v
07, 0 0 0 0 %Duﬂ
nygﬁ 0 -8 0 ((&)Dﬁ"sﬁ
Element (3)

/el D(@8284))  ((28284)) - 2.8284 ((-2.8284))Tu, [
0/,20_ 06%(((2.8284))) (((2.8284))) - 2.8284 (((-2.8284)))%51/2 0
Dr 07700 - 28284 - 2.8284  2.8284 2.8284 [, C

T Heassay (Cossdy) 282 (@828 v

The brackets identify the coefficients that contribute to the reduced stiffness matrix.
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Boundary conditions:
ur=0 vi=0 Us = 0
Fw=2000 N | F,=-3000 |Fs=0

The structure stiffness matrix has a size of 6 x 6. The reduced stiffness matrix has a
size of 3 x 3. We construct the reduced stiffness matrix by ignoring the rows and
columns corresponding to us, v, and us.

HF% | I(8)+ 28284 (0)+ 2.8284 - 28284 Tu,[]
0F,, 0= 106H(O)+ 2.8284 (0)+ 2.8284 - 2.8284 %Dv2 0=

0, I
1F,0 B -28284  -28284 ((8)+ 2.8284F v,

7108284 28284 - 2.82847Tu,
10°72.8284  2.8284 - 2.8284v, [

B 2.8284 -2.8284 10.8284FHv, [

Solve to get the required nodal displacements.

u (m) Vo V3
0.625x 10° |-2.061 x 10° |-0.375x 107

Calculate the nodal forces acting on element (3);

fozH o1 1 -1 - mH u, = 0.625 (10'3)H H' 3103H
0f,,0 S11 -1 -190w, = -2.061(10°)0 O 310°0
0% 0= 2.8284.10°C G2 ™ ™ 0= 1 0
S H-l -1 1 1% u, = 0 310°

Hfﬂﬁ -1 -1 1 1 DHV3 = -0.375 (10‘3)H H 310° H

The resultant of the elemental nodal forces acting on node 2

fa= ((-310%2%+ (- 310%?) = 4.24 kN; and
fa=V ((310%2+ (310%%) =4.24kN
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These forces are 3 i
compressive as shown in
Fig. 10.

The normal stress is

Ox@) = - (424 x 10%)/ ( 80
x 10°)=-53 x 10° Pa = (2>
-53 MPa Ans.

Fig. 10 shows the forces
acting on the other

elements. (Try to 3
calculate Them.)

| «p

5 kN 4.24

424
Fig 10

3>

Beam Elements (2-Dim)

We are going to deal with a 2-dim horizontal beam subjected to transverse

and bending moments only.

Degrees of Freedom

Fig. 11 shows a beam element. It has two degrees of freedom per node. The
element stiffness matrix has a size of 4 x 4. The sign convention used for the

moments and forces is not universal.

Fl;& vl fe & ve

4
J 2
>
ml& =) ma&ea

Y Flg 11

The Stiffness Matrix

The matrix is:

AT %12 -6L - 12 —6L%Hvl
om0 EI— 6L 4L 6L 2L o060
0p 07 00-12 6L 12 6L 1Hy,C

ﬁmzﬁ % 6L 2L 6L 4L %ﬁezﬁ

16/25

Matrix Structural Analysis




Mechanics of Structures, 2" year, Mechanical Engineering, Cairo University

Where, | is the centroidal second moment of area about the z axis (1= 1,).
This matrix equation is valid only when |, = 0. We should use another type of
elements when the y z axes are not principal axes.

An Outline of How to Derive [k]

The stiffness matrix could be derived by calculating the response of the beam
to specific independent states of displacements similar to the approach used
for deriving the truss element stiffness.

Example (3)

Get the vertical deflection and

angle of rotation (slope) at node 2,
(Fig. 12). Get the results in terms W
of E, I, and L.

Solution
The boundary conditions are:
vi=0 8:=0

F2 =-W Mz =0
By ignoring the 15! and 2™ columns and rows in the element stiffness matrix,
we get the following matrix equation.

-WQ_ EITI2 6L v,
Ho E L FeL 4%%02%

We solve these simultaneous equations to get

v,= | (WL3/3EI)
©,= | (WL?/2EI)
The student should verify these results. Note: the slope at node 2 is
clockwise.

Distributed Loads

Fig. 13-a shows a uniformly distributed force w (N/m). This force is replaced
by equivalent nodal loads as shown in Fig. 13-b (consult a textbook for the
proof).
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wL/2 wL/2

1 (LLLLLOLTTHIITL & 45
L L/ N
wL /12 wLre/12
Fig. 13-(a) Fig. 13- o)

The element equation is:

j-#

0 2.0

Hle Ewlzu
Om, 0, 12 K
0, 0%0- % [k](s)

i

i
i

Where, {8} ={vi 8: v» 8.}

% N‘g

Example (4)

w = 380 N/m
Construct the reduced system of gLLLLLMEtL ) 3
equations for the shown beam. Then | 1| <12 2000 No

determine the nodal displacements
and rotations. Moreover, calculate the
nodal loads acting on each element.
I, =4 x10°m*and E = 200 GPa.

--—4 m —=

Fig. 14

Solution
We shall model the beam using two elements. Each has L =2 m.
El/L®=(200 x 10°) (4 x | wL/2 =(300)(2)/2=300 N |wL%12 =100 Nm

10°)/2°=10° N/m
The elements equations
Element (1)
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A0 [-s001 012 -12 12 'IZDHVIH
om0, 0100 105%—12 16 12 8 16,1

00 "03008™ V2 12 12 120y, C

ﬁmzﬁm ﬁ 100@ L1208 12 16 Eﬁezﬁ
Element (2)

1A pr300p 012 -12 -12 —12@Hv2H
Jmy0 0100 105%— 12 16 12 8 ;8,0
Tp0 T03000" 12 12 12 12 0,0

Hm3ﬁ(2) ﬁ—looﬁ L1208 12 16%@@@

Boundary Conditions

v1=91=v3=0 F2=0 M2=6000Nm M3=0

The reduced system of equations

0 H H- 300- 300 a2+12 12-12 - 12DHV2H
060007+ g- 100+ 1007= 10° %12- 12 16+ 16 Dﬂazﬂ

HoHH -100 B 8-12 8 16,1

- 600 024 0 -120
H6OOOH- 100 32 HJZH
0 0= 0 DD
H- 1001 12 8 16 B, 0

Solve the system of equations to get:

v2 =-0.0014375 m | ©,=0.00246875 rad ©; =-.002375 rad
=-1.438 mm = 0.1414° =-0.1361°

The loads acting on element (1)

HﬁH 012 -12 -12 -IZDH 0 H H3OOH H—9375H
0

Oom, _105D- 12 16 12 8 DD 0 D 0-100p g 150 p

040 12 12 12 12 1 000143750 D300 07 Dys37.50

ﬁmz ﬁ(l) L1208 12 16 Hﬁo.ooz%znsﬁ ﬁlOO ﬁ ﬁ 2325 ﬁ
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Element (2)

f g12  -12 -12 -120v 300 1537.5
1724 1 =g 8008 20
Om, [ i 12 16 12 DDHzD 0-1000 0 3675 [
0,0 =107 00" 02 070 0
fi 0-12 12 12 120-0 300 2137.5

e Tn s b eBiimil

The nodal loads acting on the elements are shown in Figs. 15-(a) & 15-(b).
The reaction loads acting on the beam are shown in Fig. 15-(c).

9375
93?.53% 13375 N 15375 299 w/n 21375 N 300 N/m 21375 N
lig, i, N NTHISTTTTET A

158 Nm 2325 3675 Nm 158 6000 Nm
Element <1) Element (2) The beam
Fig. 15—¢a) Fig 15-¢b> Flg 15~

Document 2 contains the computer results to this very same problem. The
computer solution gives not only the nodal displacements but also the entire
elastic curve.

Symmetry

The following table depicts examples of symmetric beams and trusses under
static conditions Symmetry is in geometry, material properties, relevant
boundary conditions, as well as in loading. Each configuration has a plane of
symmetry. This plane virtually cut the structure into two identical parts.
Therefore, we could reduce the size of the problem by half. In doing this, we
should introduce the proper boundary conditions at the plane of symmetry
(the new edge of the reduced structure).

For beams:
* The slope at the plane of symmetry 6 is zero.
» The transverse force acting along the plane of symmetry must be
halved.
For trusses:
* The displacement at the plane of symmetry normal to it u is zero.
» The forces at this cutting plane must be halved.
» The cross sectional area of bars aligned with the axis of symmetry
must be halved.
» Bars that cross the plane of symmetry at an angle must be cut by that
plane resulting in a shorter bar (and u = 0 at the intersection).

Figures 16a, 17a, and 18a can be modelled by Figs. 16b to 18b.
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Configuration Min # of | B.C. at axis of symmetry
elements
i
-
£ = -4 kN
M=0
18 kN 4 kN 10 kN 4 {61 = 0. However, this should
not be used as a boundary
I condition.}
2
&
61 =0
l 2
_'I_ “
L/2
Flg. 16—<(b>
-
10 N £ 1@ kN
o F=0;M=0
3 We may solve the problem
without a node in the
I_ middle.
Flig. 17-(a>
4
i 10 kN
“ 2 F1 0
g 91 =0
1 e
Flgl l?_(b)
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Configuration Min # of B.C. at axis of symmetry
elements
Fxu=0
Fy1 =-5kN
6 Frx=0
Fyz =0

Note: A1) = 1000 mm?

us = 0
2.0 kN Py = 2.5 kN
U, = 0
1 A Fiz=0
:l Plus
S Us = 0
F3 =0
Note: Ay) = 500 mm?
3 )
Fig. 18—<b>
Configuration Min#of |5 - ot axis of symmetry
elements e

Plane Frames

Fig. 19 shows a simple planar frame with assigned nodes and elements (or
joints and members). Each element is capable of sustaining bending
moments, shearing and axial forces.

A typical plane frame element (Fig. 20) has two nodes each has three
degrees of freedom.

The element equation is:

{f}e) = [Klee) {O}; where
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' ={f« fu m fo fo m2}" and
Yy ={urvi 81 u vy 6}

ml &el
Flg. 19 Fig. 20

Global Versus Local Axes

Fig. 21 shows two sets of axes x-y of the whole structure (or global axes) and
x-y" local axes. The axis x" is aligned with the centroidal axis of the member.
The local axes are useful in inputting distributed forces perpendicular to
inclined elements.

Frames are sometimes made of segments connected by hinges as for the
linkages of a shoe brake (Fig. 22). Therefore frame elements may have one
node hinged but the other node transmits moment (Fig. 23). Moreover,
computer programs allow the user to input both nodes of a frame element as
hinges. Hence, a frame element can be used as a truss element.

. o $O—

]y_x ‘I,hlnge
Fig. 21 Flg. 22
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fyl & vl

fx1 & ul

Fig. 23 AL, =

A Practical Example

Fig. 24 shows a bus frame subjected to roof load of 100 kN in order to test its
strength. This is an example of how engineers use computer programs to
solve engineering problems (Logan). In this example, 599 frame elements
and 357 nodes were used.

Comments

This introduction is elementary and limited in scope. Many topics were
omitted such as inclined rolling supports and the details of frame elements.

In order to appreciate the strength of the method, students should solve
certain assigned problems using a computer program.
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1-Dim bar

1 > 2
fx1 fxe
EAMTHJ%H@% _ 0k -kD %%H u_'=—ué
LA Bfaf, Tk kf,0u
Fig. 2—a
Plane truss
folH Jc¢* s -¢° -csDH%H ve & FyE
0/,0_ Hcs s - cs -S2%DV1D
Rl Lo oo Bl | S c
A I SN 2 & Fx2
ol
—]
> ul & fx1
Fig. 7/
Plane horizontal beam
EAL e A I SV | f2 & ve
DmlD:ﬂD_ 6L 4L 6L 2L DD91D i i
De0" o012 6L 12 6L 0y,C l 5
ﬁmzﬁ 6L 2 6L 4L Hﬁezﬁ 1 AN
jowl
H ! DW_IZD 1 el c e
00 12, 0 [xl) Flg, 11
2 0——10
ﬁ”@ﬁ D 2 2D
- wl
N

25/25

Matrix Structural Analysis




	Matrix Structural Analysis – the Stiffness Method
	Axial Bars (1-Dim)
	Input Data
	Stiffness Matrix
	Temperature Effect
	Degrees of Freedom
	Basic Steps in the Method
	Example (1)
	Properties of the Bar Stiffness Matrix
	An Alternative Derivation of the Element Stiffness Matrix

	Truss Elements (2-Dim)
	Degrees of Freedom
	The Element Stiffness Matrix
	Derivation of [k]
	Example (2)

	Beam Elements (2-Dim)
	Degrees of Freedom
	The Stiffness Matrix
	An Outline of How to Derive [k]
	Example (3)
	Distributed Loads
	Example (4)

	Symmetry
	Plane Frames
	Global Versus Local Axes
	A Practical Example

	Comments
	References
	Appendix – Formulas


